Francisco Velazquez Escobar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11151410/publications.pdf

Version: 2024-02-01

24 papers 868 citations

567281 15 h-index 610901 24 g-index

24 all docs

24 docs citations

times ranked

24

799 citing authors

#	Article	IF	CITATIONS
1	Validation of coffee by-products as novel food ingredients. Innovative Food Science and Emerging Technologies, 2019, 51, 194-204.	5.6	123
2	Cyanochromes Are Blue/Green Light Photoreversible Photoreceptors Defined by a Stable Double Cysteine Linkage to a Phycoviolobilin-type Chromophore. Journal of Biological Chemistry, 2009, 284, 29757-29772.	3.4	75
3	A protonation-coupled feedback mechanism controls the signalling process in bathy phytochromes. Nature Chemistry, 2015, 7, 423-430.	13.6	74
4	Photoconversion Mechanism of the Second GAF Domain of Cyanobacteriochrome AnPixJ and the Cofactor Structure of Its Green-Absorbing State. Biochemistry, 2013, 52, 4871-4880.	2.5	68
5	Chromophore Structure of Cyanobacterial Phytochrome Cph1 in the Pr State: Reconciling Structural and Spectroscopic Data by QM/MM Calculations. Biophysical Journal, 2009, 96, 4153-4163.	0.5	66
6	Structural snapshot of a bacterial phytochrome in its functional intermediate state. Nature Communications, 2018, 9, 4912.	12.8	62
7	Structure of the Biliverdin Cofactor in the Pfr State of Bathy and Prototypical Phytochromes. Journal of Biological Chemistry, 2013, 288, 16800-16814.	3.4	58
8	Protonation-Dependent Structural Heterogeneity in the Chromophore Binding Site of Cyanobacterial Phytochrome Cph1. Journal of Physical Chemistry B, 2017, 121, 47-57.	2.6	56
9	Unusual Spectral Properties of Bacteriophytochrome Agp2 Result from a Deprotonation of the Chromophore in the Red-absorbing Form Pr. Journal of Biological Chemistry, 2013, 288, 31738-31751.	3.4	45
10	A Red/Green Cyanobacteriochrome Sustains Its Color Despite a Change in the Bilin Chromophore's Protonation State. Biochemistry, 2015, 54, 5839-5848.	2.5	44
11	Structural Parameters Controlling the Fluorescence Properties of Phytochromes. Biochemistry, 2014, 53, 20-29.	2.5	32
12	Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes. Frontiers in Molecular Biosciences, 2015, 2, 37.	3.5	26
13	Common Structural Elements in the Chromophore Binding Pocket of the Pfr State of Bathy Phytochromes. Photochemistry and Photobiology, 2017, 93, 724-732.	2.5	21
14	The role of local and remote amino acid substitutions for optimizing fluorescence in bacteriophytochromes: A case study on iRFP. Scientific Reports, 2016, 6, 28444.	3.3	19
15	Chromophore binding to two cysteines increases quantum yield of near-infrared fluorescent proteins. Scientific Reports, 2019, 9, 1866.	3.3	15
16	Intramolecular Proton Transfer Controls Protein Structural Changes in Phytochrome. Biochemistry, 2020, 59, 1023-1037.	2.5	14
17	Role of the Propionic Side Chains for the Photoconversion of Bacterial Phytochromes. Biochemistry, 2019, 58, 3504-3519.	2.5	13
18	Ultrafast proton-coupled isomerization in the phototransformation of phytochrome. Nature Chemistry, 2022, 14, 823-830.	13.6	12

#	Article	IF	CITATION
19	The Lumi-R Intermediates of Prototypical Phytochromes. Journal of Physical Chemistry B, 2020, 124, 4044-4055.	2.6	10
20	Comparison of the Forward and Reverse Photocycle Dynamics of Two Highly Similar Canonical Red/Green Cyanobacteriochromes Reveals Unexpected Differences. Biochemistry, 2021, 60, 274-288.	2.5	9
21	Light- and temperature-dependent dynamics of chromophore and protein structural changes in bathy phytochrome Agp2. Physical Chemistry Chemical Physics, 2021, 23, 18197-18205.	2.8	8
22	Structural communication between the chromophoreâ€binding pocket and the Nâ€terminal extension in plant phytochrome phyB. FEBS Letters, 2017, 591, 1258-1265.	2.8	7
23	Photoinduced reaction mechanisms in prototypical and bathy phytochromes. Physical Chemistry Chemical Physics, 2022, 24, 11967-11978.	2.8	6
24	Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome. Communications Chemistry, 2021, 4, .	4.5	5