Chao Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/111513/publications.pdf Version: 2024-02-01

CHAO DENC

#	Article	IF	CITATIONS
1	Effect of strain rates on mechanical properties, microstructure and texture inside shear bands of pure magnesium. Materials Characterization, 2022, 184, 111686.	4.4	4
2	Microstructural evolution and ultrafine-grain formation during dynamic shear in pure tantalum. Materials Characterization, 2022, 186, 111820.	4.4	3
3	Microstructure, texture, and fracture of pure magnesium adiabatic shear band under high strain rate compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141632.	5.6	17
4	Orientation-dependent grain boundary characteristics in tantalum upon the change of strain path. Materials Characterization, 2019, 154, 277-284.	4.4	8
5	Inhomogeneous deformation and recrystallization behavior of through-thickness tantalum sheet under one-cycle clock-rolling. Progress in Natural Science: Materials International, 2019, 29, 485-493.	4.4	11
6	The Effect of Different Annealing Temperatures on Recrystallization Microstructure and Texture of Clock-Rolled Tantalum Plates with Strong Texture Gradient. Metals, 2019, 9, 358.	2.3	3
7	Effects of Annealing Temperature on Recrystallization Texture and Microstructure Uniformity of High Purity Tantalum. Metals, 2019, 9, 75.	2.3	9
8	Quasi-In-Situ EBSD Observation of the Orientation Evolution in Polycrystalline Tantalum During Rolling Deformation. Acta Metallurgica Sinica (English Letters), 2019, 32, 1015-1020.	2.9	4
9	Strain accommodation of <110>-normal direction-oriented grains in micro-shear bands of high-purity tantalum. Journal of Materials Science, 2018, 53, 12543-12552.	3.7	13
10	Crystallographic analysis of nucleation for random orientations in high-purity tantalum. Journal of Materials Research, 2018, 33, 1755-1763.	2.6	4
11	Through-thickness texture gradient of tantalum sputtering target. Rare Metals, 2017, 36, 523-526.	7.1	6
12	Revealing substructure in clock-rolled Ta aided with triple focused ion beam. Rare Metals, 2017, 36, 284-288.	7.1	2
13	135° Clock Rolling: An Approach to Improve the Microstructure and Texture of Tantalum Used for Sputtering Target. , 2016, , 549-557.		0
14	Largely alleviating the orientation dependence by sequentially changing strain paths. Materials and Design, 2016, 97, 464-472.	7.0	36
15	An Effective Method to Homogenize the Microstructure of High Purity Tantalum in Sputtering Targets. , 0, , 303-308.		0