Masayuki Masu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11151155/publications.pdf

Version: 2024-02-01

201674 223800 9,368 48 27 46 citations h-index g-index papers 50 50 50 6348 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Diffusion magnetic resonance tractography-based evaluation of commissural fiber abnormalities in a heparan sulfate endosulfatase-deficient mouse brain. Magnetic Resonance Imaging, 2022, 88, 123-123.	1.8	O
2	Regulation of fractone heparan sulfate composition in young and aged subventricular zone neurogenic niches. Glycobiology, 2021, , .	2.5	4
3	Expression of Heparan Sulfate Endosulfatases in the Adult Mouse Brain: Co-expression of Sulf1 and Dopamine D1/D2 Receptors. Frontiers in Neuroanatomy, 2021, 15, 726718.	1.7	1
4	Data for 3D reconstruction of the corticospinal tract in the wild-type and Semaphorin 6A knockout adult brain. Data in Brief, 2019, 23, 103718.	1.0	1
5	Remarkable complexity and variability of corticospinal tract defects in adult Semaphorin 6A knockout mice. Brain Research, 2019, 1710, 209-219.	2.2	19
6	Abnormal Pyramidal Decussation and Bilateral Projection of the Corticospinal Tract Axons in Mice Lacking the Heparan Sulfate Endosulfatases, Sulf1 and Sulf2. Frontiers in Molecular Neuroscience, 2019, 12, 333.	2.9	8
7	Sulfatase 2 Modulates Fate Change from Motor Neurons to Oligodendrocyte Precursor Cells through Coordinated Regulation of Shh Signaling with Sulfatase 1. Developmental Neuroscience, 2017, 39, 361-374.	2.0	15
8	Desulfation of Heparan Sulfate by Sulf1 and Sulf2 Is Required for Corticospinal Tract Formation. Scientific Reports, 2017, 7, 13847.	3.3	22
9	Structural basis for Ccd1 auto-inhibition in the Wnt pathway through homomerization of the DIX domain. Scientific Reports, 2017, 7, 7739.	3.3	6
10	Heparan sulfate 6- <i>O</i> -endosulfatases, Sulf1 and Sulf2, regulate glomerular integrity by modulating growth factor signaling. American Journal of Physiology - Renal Physiology, 2016, 310, F395-F408.	2.7	19
11	Proteoglycans and axon guidance: a new relationship between old partners. Journal of Neurochemistry, 2016, 139, 58-75.	3.9	32
12	Expression of the heparan sulfate 6â€Oâ€endosulfatases, Sulf1 and Sulf2, in the avian and mammalian inner ear suggests a role for sulfation during inner ear development. Developmental Dynamics, 2015, 244, 168-180.	1.8	8
13	A unique mouse model for investigating the properties of amyotrophic lateral sclerosis-associated protein TDP-43, by in utero electroporation. Neuroscience Research, 2013, 77, 234-241.	1.9	4
14	ErbB2 Dephosphorylation and Anti-Proliferative Effects of Neuregulin-1 in ErbB2-Overexpressing Cells; Re-evaluation of Their Low-Affinity Interaction. Scientific Reports, 2013, 3, 1402.	3 . 3	7
15	Autotaxin expression from synovial fibroblasts is essential for the pathogenesis of modeled arthritis. Journal of Experimental Medicine, 2012, 209, 925-933.	8.5	143
16	Organ-specific Sulfation Patterns of Heparan Sulfate Generated by Extracellular Sulfatases Sulf1 and Sulf2 in Mice. Journal of Biological Chemistry, 2012, 287, 9579-9590.	3 . 4	84
17	Impaired vascular remodeling in the yolk sac of embryos deficient in ROCK-I and ROCK-II. Genes To Cells, 2011, 16, 1012-1021.	1,2	33
18	Crystallographic characterization of the DIX domain of the Wnt signalling positive regulator Ccd1. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 758-761.	0.7	1

#	Article	IF	Citations
19	Autotaxin is required for the cranial neural tube closure and establishment of the midbrain–hindbrain boundary during mouse development. Developmental Dynamics, 2011, 240, 413-421.	1.8	33
20	Proteolytic cleavage of the rat heparan sulfate 6-O-endosulfatase SulfFP2 by furin-type proprotein convertases. Biochemical and Biophysical Research Communications, 2010, 391, 107-112.	2.1	10
21	Deficiency of autotaxin/lysophospholipase D results in head cavity formation in mouse embryos through the LPA receptor-Rho-ROCK pathway. Biochemical and Biophysical Research Communications, 2010, 400, 66-71.	2.1	27
22	Autotaxin/Lysophospholipase D-mediated Lysophosphatidic Acid Signaling Is Required to Form Distinctive Large Lysosomes in the Visceral Endoderm Cells of the Mouse Yolk Sac. Journal of Biological Chemistry, 2009, 284, 33561-33570.	3.4	46
23	A SnoN–Ccd1 Pathway Promotes Axonal Morphogenesis in the Mammalian Brain. Journal of Neuroscience, 2009, 29, 4312-4321.	3.6	56
24	Heparan Sulfate Endosulfatase Assay. , 2008, , 123-124.		0
25	Migration and nucleogenesis of mouse precerebellar neurons visualized by in utero electroporation of a green fluorescent protein gene. Neuroscience Research, 2007, 57, 40-49.	1.9	45
26	Genetic marking of hematopoietic stem and endothelial cells: identification of the Tmtsp gene encoding a novel cell surface protein with the thrombospondin-1 domain. Blood, 2006, 107, 4317-4325.	1.4	15
27	The N-terminal hydrophobic sequence of autotaxin (ENPP2) functions as a signal peptide. Genes To Cells, 2006, 11, 133-142.	1.2	67
28	Expression of mouse Coiled-coil-DIX1 (Ccd1), a positive regulator of Wnt signaling, during embryonic development. Gene Expression Patterns, 2006, 6, 325-330.	0.8	15
29	Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling. Journal of Cell Biology, 2006, 174, 773-778.	5.2	124
30	Expression of a heparan sulfate remodeling enzyme, heparan sulfate 6-O-endosulfatase sulfatase FP2, in the rat nervous system. Developmental Brain Research, 2005, 159, 135-143.	1.7	37
31	Identification and differential expression of multiple isoforms of mouse Coiled-coil-DIX1 (Ccd1), a positive regulator of Wnt signaling. Molecular Brain Research, 2005, 135, 169-180.	2.3	25
32	Ccd1, a Novel Protein with a DIX Domain, Is a Positive Regulator in the Wnt Signaling during Zebrafish Neural Patterning. Current Biology, 2003, 13, 73-77.	3.9	70
33	Distribution of Cystine/Glutamate Exchange Transporter, System x _c ^{â^'} , in the Mouse Brain. Journal of Neuroscience, 2002, 22, 8028-8033.	3.6	151
34	Identification of a novel nonlysosomal sulphatase expressed in the floor plate, choroid plexus and cartilage. Genes To Cells, 2002, 7, 173-185.	1.2	81
35	Glutamate receptors: brain function and signal transduction. Brain Research Reviews, 1998, 26, 230-235.	9.0	297
36	The mGluR6 5′ Upstream Transgene Sequence Directs a Cell-Specific and Developmentally Regulated Expression in Retinal Rod and ON-Type Cone Bipolar Cells. Journal of Neuroscience, 1997, 17, 3014-3023.	3.6	72

#	Article	IF	CITATIONS
37	Phenotype of mice lacking functional Deleted in colorectal cancer (Dec) gene. Nature, 1997, 386, 796-804.	27.8	717
38	Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature, 1997, 386, 833-838.	27.8	474
39	Deleted in Colorectal Cancer (DCC) Encodes a Netrin Receptor. Cell, 1996, 87, 175-185.	28.9	934
40	Characterization of Excitatory Amino Acid Neurotoxicity inN-methyl-D-aspartate Receptor-deficient Mouse Cortical Neuronal Cells. European Journal of Neuroscience, 1996, 8, 69-78.	2.6	25
41	Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell, 1995, 80, 757-765.	28.9	452
42	Molecular Characterization of NMDA and Metabotropic Glutamate Receptors. Annals of the New York Academy of Sciences, 1993, 707, 153-164.	3.8	56
43	Agonist analysis of 2â€(carboxycyclopropyl)glycine isomers for cloned metabotropic glutamate receptor subtypes expressed in Chinese hamster ovary cells. British Journal of Pharmacology, 1992, 107, 539-543.	5.4	184
44	A family of metabotropic glutamate receptors. Neuron, 1992, 8, 169-179.	8.1	992
45	Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochemical and Biophysical Research Communications, 1992, 185, 826-832.	2.1	501
46	Sequence and expression of a metabotropic glutamate receptor. Nature, 1991, 349, 760-765.	27.8	1,211
47	Molecular cloning and characterization of the rat NMDA receptor. Nature, 1991, 354, 31-37.	27.8	1,738
48	Structure and functional expression of the cloned rat neurotensin receptor. Neuron, 1990, 4, 847-854.	8.1	506