
Poul Georg Moses

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11150095/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomimetic Hydrogen Evolution:Â MoS2Nanoparticles as Catalyst for Hydrogen Evolution. Journal of the American Chemical Society, 2005, 127, 5308-5309.	13.7	3,497
2	A Consistent Reaction Scheme for the Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. ACS Catalysis, 2015, 5, 2832-2845.	11.2	400
3	The effect of Co-promotion on MoS2 catalysts for hydrodesulfurization of thiophene: A density functional study. Journal of Catalysis, 2009, 268, 201-208.	6.2	136
4	Methanol-to-hydrocarbons conversion: The alkene methylation pathway. Journal of Catalysis, 2014, 314, 159-169.	6.2	136
5	Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS2. Journal of Chemical Physics, 2009, 130, 104709.	3.0	108
6	A complete reaction mechanism for standard and fast selective catalytic reduction of nitrogen oxides on low coverage VO /TiO2(0 0 1) catalysts. Journal of Catalysis, 2017, 346, 188-197.	6.2	101
7	Ketene as a Reaction Intermediate in the Carbonylation of Dimethyl Ether to Methyl Acetate over Mordenite. Angewandte Chemie - International Edition, 2015, 54, 7261-7264.	13.8	98
8	A density functional study of inhibition of the HDS hydrogenation pathway by pyridine, benzene, and H2S on MoS2-based catalysts. Catalysis Today, 2006, 111, 44-51.	4.4	93
9	Methanol to Dimethyl Ether over ZSM-22: A Periodic Density Functional Theory Study. ACS Catalysis, 2013, 3, 735-745.	11.2	76
10	Visualizing atomic-scale redox dynamics in vanadium oxide-based catalysts. Nature Communications, 2017, 8, 305.	12.8	59
11	Thermochemistry and micro-kinetic analysis of methanol synthesis on ZnO (0 0 0 1). Journal of Catalysis, 2014, 309, 397-407.	6.2	54
12	The reaction mechanism for the SCR process on monomer V ⁵⁺ sites and the effect of modified BrĀ,nsted acidity. Physical Chemistry Chemical Physics, 2016, 18, 17071-17080.	2.8	53
13	Modeling the adsorption of sulfur containing molecules and their hydrodesulfurization intermediates on the Co-promoted MoS2 catalyst by DFT. Journal of Catalysis, 2018, 358, 131-140.	6.2	43
14	Coexistence of Square Pyramidal Structures of Oxo Vanadium (+5) and (+4) Species Over Low-Coverage VO _{<i>X</i>} /TiO ₂ (101) and (001) Anatase Catalysts. Journal of Physical Chemistry C, 2015, 119, 23445-23452.	3.1	34
15	Trends in Hydrodesulfurization Catalysis Based on Realistic Surface Models. Catalysis Letters, 2014, 144, 1425-1432.	2.6	32
16	Activation of Oxygen and NO in NH3-SCR over Cu-CHA Catalysts Evaluated by Density Functional Theory. Topics in Catalysis, 2016, 59, 861-865.	2.8	31
17	Topotactic Growth of Edge-Terminated MoS ₂ from MoO ₂ Nanocrystals. ACS Nano, 2018, 12, 5351-5358.	14.6	26
18	Recent density functional studies of hydrodesulfurization catalysts: insight into structure and mechanism. Journal of Physics Condensed Matter, 2008, 20, 064236.	1.8	25

POUL GEORG MOSES

#	Article	IF	CITATIONS
19	Modeling the active sites of Co-promoted MoS ₂ particles by DFT. Physical Chemistry Chemical Physics, 2017, 19, 2017-2024.	2.8	25
20	Single-atom Pt promotion of industrial Co-Mo-S catalysts for ultra-deep hydrodesulfurization. Journal of Catalysis, 2021, 403, 74-86.	6.2	21
21	Relation between Hydrogen Evolution and Hydrodesulfurization Catalysis. ChemCatChem, 2016, 8, 3334-3337.	3.7	20
22	Exploring Scaling Relations for Chemisorption Energies on Transitionâ€Metalâ€Exchanged Zeolites ZSMâ€22 and ZSMâ€5. ChemCatChem, 2016, 8, 767-772.	3.7	18
23	Electrochemically Generated Copper Carbonyl for Selective Dimethyl Carbonate Synthesis. ACS Catalysis, 2019, 9, 859-866.	11.2	15
24	Biomimetic Hydrogen Evolution: MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. ChemInform, 2005, 36, no.	0.0	12
25	Probing surface-sensitive redox properties of VO _x /TiO ₂ catalyst nanoparticles. Nanoscale, 2021, 13, 7266-7272.	5.6	9
26	Catalyst design criteria and fundamental limitations in the electrochemical synthesis of dimethyl carbonate. Green Chemistry, 2019, 21, 6200-6209.	9.0	6
27	An industrial perspective on the impact of Haldor TopsÃe on computational chemistry. Journal of Catalysis, 2015, 328, 19-25.	6.2	4
28	Surface Topotactic Growth of Edge-Terminated MoS2 Catalysts. Microscopy and Microanalysis, 2019, 25, 1456-1457.	0.4	0