
Kung-Shih Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11149816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Lightâ€Harvesting by Integrating Synergetic Microcavity and Plasmonic Effects for Highâ€Performance ITOâ€Free Flexible Polymer Solar Cells. Advanced Functional Materials, 2015, 25, 567-574.	14.9	44
2	Strong Photocurrent Enhancements in Highly Efficient Flexible Organic Solar Cells by Adopting a Microcavity Configuration. Advanced Materials, 2014, 26, 3349-3354.	21.0	63
3	Microcavityâ€Enhanced Lightâ€Trapping for Highly Efficient Organic Parallel Tandem Solar Cells. Advanced Materials, 2014, 26, 6778-6784.	21.0	89
4	Non-halogenated solvents for environmentally friendly processing of high-performance bulk-heterojunction polymer solar cells. Energy and Environmental Science, 2013, 6, 3241.	30.8	168
5	Toward Highâ€Performance Semiâ€Transparent Polymer Solar Cells: Optimization of Ultraâ€Thin Light Absorbing Layer and Transparent Cathode Architecture. Advanced Energy Materials, 2013, 3, 417-423.	19.5	141
6	Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications. Energy and Environmental Science, 2012, 5, 9551.	30.8	323
7	Polymer Triplet Energy Levels Need Not Limit Photocurrent Collection in Organic Solar Cells. Journal of the American Chemical Society, 2012, 134, 19661-19668.	13.7	61
8	Halogen-free solvent processing for sustainable development of high efficiency organic solar cells. Organic Electronics, 2012, 13, 2870-2878.	2.6	82
9	Improved thin film morphology and bulk-heterojunction solar cell performance through systematic tuning of the surface energy of conjugated polymers. Journal of Materials Chemistry, 2012, 22, 5587.	6.7	73
10	Tunable lightâ€harvesting polymers containing embedded dipolar chromophores for polymer solar cell applications. Journal of Polymer Science Part A, 2012, 50, 1362-1373.	2.3	18
11	Fully visible-light-harvesting conjugated polymers with pendant donor-ï€-acceptor chromophores for photovoltaic applications. Solar Energy Materials and Solar Cells, 2012, 97, 50-58.	6.2	16
12	Benzobis(silolothiophene)-Based Low Bandgap Polymers for Efficient Polymer Solar Cells. Chemistry of Materials, 2011, 23, 765-767.	6.7	101
13	Chemically Doped and Cross-linked Hole-Transporting Materials as an Efficient Anode Buffer Layer for Polymer Solar Cells. Chemistry of Materials, 2011, 23, 5006-5015.	6.7	73
14	High-mobility low-bandgap conjugated copolymers based on indacenodithiophene and thiadiazolo[3,4-c]pyridine units for thin film transistor and photovoltaic applications. Journal of Materials Chemistry, 2011, 21, 13247.	6.7	102
15	n-Doping of thermally polymerizable fullerenes as an electron transporting layer for inverted polymer solar cells. Journal of Materials Chemistry, 2011, 21, 6956.	6.7	60
16	Conjugated polymers based on C, Si and N-bridged dithiophene and thienopyrroledione units: synthesis, field-effect transistors and bulk heterojunction polymer solar cells. Journal of Materials Chemistry, 2011, 21, 3895.	6.7	110
17	Indacenodithiophene and Quinoxaline-Based Conjugated Polymers for Highly Efficient Polymer Solar Cells. Chemistry of Materials, 2011, 23, 2289-2291.	6.7	318
18	Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers. Chemical Communications, 2011, 47, 11026.	4.1	241

KUNG-SHIH CHEN

#	Article	IF	CITATIONS
19	Synthesis, Characterization, Charge Transport, and Photovoltaic Properties of Dithienobenzoquinoxaline- and Dithienobenzopyridopyrazine-Based Conjugated Polymers. Macromolecules, 2011, 44, 4752-4758.	4.8	111
20	Surface Doping of Conjugated Polymers by Graphene Oxide and Its Application for Organic Electronic Devices. Advanced Materials, 2011, 23, 1903-1908.	21.0	204
21	Highly efficient indacenodithiophene-based polymeric solar cells in conventional and inverted device configurations. Organic Electronics, 2011, 12, 794-801.	2.6	43
22	Metal Nanoparticle Enhanced Organic Solar Cells: A Numerical Study of Structure Property Relationships. , 2011, , .		0
23	Solution processed inverted tandem polymer solar cells with self-assembled monolayer modified interfacial layers. Applied Physics Letters, 2010, 97, .	3.3	44
24	Synthesis, Characterization, and Photovoltaic Properties of Carbazole-Based Two-Dimensional Conjugated Polymers with Donor-Ï€-Bridge-Acceptor Side Chains. Chemistry of Materials, 2010, 22, 6444-6452.	6.7	95
25	Development of New Conjugated Polymers with Donorâ~'ï€-Bridgeâ~Acceptor Side Chains for High Performance Solar Cells. Journal of the American Chemical Society, 2009, 131, 13886-13887.	13.7	335
26	High Performance Amorphous Metallated π-Conjugated Polymers for Field-Effect Transistors and Polymer Solar Cells. Chemistry of Materials, 2008, 20, 5734-5736.	6.7	182