Nicola Santoro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11149325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TuringMobile: a turing machine of oblivious mobile robots with limited visibility and its applications. Distributed Computing, 2022, 35, 105.	0.7	0
2	Fully Dynamic Line Maintenance by a Simple Robot. , 2022, , .		1
3	On theÂComputational Power ofÂEnergy-Constrained Mobile Robots: Algorithms andÂCross-Model Analysis. Lecture Notes in Computer Science, 2022, , 42-61.	1.0	4
4	Autonomous Mobile Robots: Refining the Computational Landscape. , 2021, , .		2
5	Separating Bounded and Unbounded Asynchrony for Autonomous Robots. , 2021, , .		3
6	Black Hole Search in Dynamic Rings. , 2021, , .		3
7	Gathering in dynamic rings. Theoretical Computer Science, 2020, 811, 79-98.	0.5	18
8	Shape formation by programmable particles. Distributed Computing, 2020, 33, 69-101.	0.7	30
9	Meeting in a polygon by anonymous oblivious robots. Distributed Computing, 2020, 33, 445-469.	0.7	1
10	Forming Sequences of Patterns With Luminous Robots. IEEE Access, 2020, 8, 90577-90597.	2.6	4
11	Designing a Streaming Algorithm for Outlier Detection in Data Mining—An Incrementa Approach. Sensors, 2020, 20, 1261.	2.1	22
12	Fault-tolerant simulation of population protocols. Distributed Computing, 2020, 33, 561-578.	0.7	1
13	Weak robots performing conflicting tasks without knowing who is in their team. , 2020, , .		5
14	Moving and Computing Models: Agents. Lecture Notes in Computer Science, 2019, , 15-34.	1.0	3
15	Real-time Outlier Detection Over Streaming Data. , 2019, , .		5
16	Line Recovery by Programmable Particles. , 2018, , .		13
17	Energy Restoration in a Linear Sensor Network. , 2018, , .		3
18	Distributed computing by mobile robots: uniform circle formation. Distributed Computing, 2017, 30, 413-457.	0.7	40

#	Article	IF	CITATIONS
19	Gathering in Dynamic Rings. Lecture Notes in Computer Science, 2017, , 339-355.	1.0	7
20	Autonomous mobile robots with lights. Theoretical Computer Science, 2016, 609, 171-184.	0.5	101
21	Distributed Black Virus Decontamination and Rooted Acyclic Orientations. , 2015, , .		2
22	Forming sequences of geometric patterns with oblivious mobile robots. Distributed Computing, 2015, 28, 131-145.	0.7	55
23	Distributed Computing by Mobile Robots: Solving the Uniform Circle Formation Problem. Lecture Notes in Computer Science, 2014, , 217-232.	1.0	13
24	Synchronized Dancing of Oblivious Chameleons. Lecture Notes in Computer Science, 2014, , 113-124.	1.0	7
25	Distributed Barrier Coverage with Relocatable Sensors. Lecture Notes in Computer Science, 2014, , 235-249.	1.0	6
26	Robots with Lights: Overcoming Obstructed Visibility Without Colliding. Lecture Notes in Computer Science, 2014, , 150-164.	1.0	20
27	Chapter 6: Energy Restoration in Mobile Sensor Networks. , 2014, , 113-142.		2
28	Computing Without Communicating: Ring Exploration by Asynchronous Oblivious Robots. Algorithmica, 2013, 65, 562-583.	1.0	58
29	Network Decontamination from a Black Virus. , 2013, , .		8
30	Exploring an unknown dangerous graph using tokens. Theoretical Computer Science, 2013, 472, 28-45.	0.5	20
31	Rendezvous of Two Robots with Constant Memory. Lecture Notes in Computer Science, 2013, , 189-200.	1.0	20
32	Mobility and Computations: Some Open Research Directions. Lecture Notes in Computer Science, 2013, , 1-3.	1.0	0
33	Distributed Computing by Mobile Robots: Gathering. SIAM Journal on Computing, 2012, 41, 829-879.	0.8	166
34	Asynchronous Exploration of an Unknown Anonymous Dangerous Graph with O(1) Pebbles. Lecture Notes in Computer Science, 2012, , 279-290.	1.0	10
35	The Power of Lights: Synchronizing Asynchronous Robots Using Visible Bits. , 2012, , .		34
36	Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory, 2012, 3, 1-185.	0.1	116

#	Article	IF	CITATIONS
37	Searching for Black Holes in Subways. Theory of Computing Systems, 2012, 50, 158-184.	0.7	22
38	Ping Pong in Dangerous Graphs: Optimal Black Hole Search with Pebbles. Algorithmica, 2012, 62, 1006-1033.	1.0	31
39	Finding Good Coffee in Paris. Lecture Notes in Computer Science, 2012, , 154-165.	1.0	3
40	Fault-Tolerant Exploration of an Unknown Dangerous Graph by Scattered Agents. Lecture Notes in Computer Science, 2012, , 299-313.	1.0	4
41	Efficient, Decentralized Computation of the Topology of Spatial Regions. IEEE Transactions on Computers, 2011, 60, 1100-1113.	2.4	14
42	How many oblivious robots can explore a line. Information Processing Letters, 2011, 111, 1027-1031.	0.4	28
43	UNIFORM SCATTERING OF AUTONOMOUS MOBILE ROBOTS IN A GRID. International Journal of Foundations of Computer Science, 2011, 22, 679-697.	0.8	37
44	Improving the Optimal Bounds for Black Hole Search in Rings. Lecture Notes in Computer Science, 2011, , 198-209.	1.0	8
45	Remembering without memory: Tree exploration by asynchronous oblivious robots. Theoretical Computer Science, 2010, 411, 1583-1598.	0.5	62
46	From P2P to reliable semantic P2P systems. Peer-to-Peer Networking and Applications, 2010, 3, 363-381.	2.6	6
47	On the computational power of oblivious robots. , 2010, , .		28
48	Mobility-Based Strategies for Energy Restoration in Wireless Sensor Networks. , 2010, , .		6
49	Mapping an Unfriendly Subway System. Lecture Notes in Computer Science, 2010, , 190-201.	1.0	10
50	Network Exploration by Silent and Oblivious Robots. Lecture Notes in Computer Science, 2010, , 208-219.	1.0	29
51	Time Optimal Algorithms for Black Hole Search in Rings. Lecture Notes in Computer Science, 2010, , 58-71.	1.0	5
52	Map construction and exploration by mobile agents scattered in a dangerous network. , 2009, , .		22
53	Fault-Tolerant Sequential Scan. Theory of Computing Systems, 2009, 45, 1-26.	0.7	1

54 Distributed Facility Location for Sensor Network Maintenance. , 2009, , .

8

#	Article	IF	CITATIONS
55	Localized Distance-Sensitive Service Discovery in Wireless Sensor and Actor Networks. IEEE Transactions on Computers, 2009, 58, 1275-1288.	2.4	56
56	Self-deployment of mobile sensors on a ring. Theoretical Computer Science, 2008, 402, 67-80.	0.5	78
57	Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theoretical Computer Science, 2008, 407, 412-447.	0.5	166
58	USING SCATTERED MOBILE AGENTS TO LOCATE A BLACK HOLE IN AN UN-ORIENTED RING WITH TOKENS. International Journal of Foundations of Computer Science, 2008, 19, 1355-1372.	0.8	27
59	Ping Pong in Dangerous Graphs: Optimal Black Hole Search with Pure Tokens. Lecture Notes in Computer Science, 2008, , 227-241.	1.0	13
60	Deployment of Asynchronous Robotic Sensors in Unknown Orthogonal Environments. Lecture Notes in Computer Science, 2008, , 125-140.	1.0	19
61	NETWORK DECONTAMINATION IN PRESENCE OF LOCAL IMMUNITY. International Journal of Foundations of Computer Science, 2007, 18, 457-474.	0.8	25
62	Scattered Black Hole Search in an Oriented Ring using Tokens. , 2007, , .		13
63	Map construction of unknown graphs by multiple agents. Theoretical Computer Science, 2007, 385, 34-48.	0.5	59
64	Rendezvous and Election of Mobile Agents: Impact of Sense of Direction. Theory of Computing Systems, 2007, 40, 143-162.	0.7	43
65	Mobile Search for a Black Hole in an Anonymous Ring. Algorithmica, 2007, 48, 67-90.	1.0	77
66	Locating a Black Hole in an Un-oriented Ring Using Tokens: The Case of Scattered Agents. Lecture Notes in Computer Science, 2007, , 608-617.	1.0	10
67	Rendezvous of Mobile Agents in Unknown Graphs with Faulty Links. Lecture Notes in Computer Science, 2007, , 108-122.	1.0	35
68	ZONER: A ZONE-based Sensor Relocation Protocol for Mobile Sensor Networks. Local Computer Networks (LCN), Proceedings of the IEEE Conference on, 2006, , .	0.0	24
69	Searching for a black hole in arbitrary networks: optimal mobile agents protocols. Distributed Computing, 2006, 19, 1-99999.	0.7	72
70	Gathering of asynchronous robots with limited visibility. Theoretical Computer Science, 2005, 337, 147-168.	0.5	319
71	Solving the Robots Gathering Problem. Lecture Notes in Computer Science, 2003, , 1181-1196.	1.0	108
72	Distributed computing on oriented anonymous hypercubes with faulty components. Distributed Computing, 2001, 14, 185-189.	0.7	3

#	Article	IF	CITATIONS
73	Hard Tasks for Weak Robots: The Role of Common Knowledge in Pattern Formation by Autonomous Mobile Robots. Lecture Notes in Computer Science, 1999, , 93-102.	1.0	85
74	Sense of direction: Definitions, properties, and classes. Networks, 1998, 32, 165-180.	1.6	47
75	TOPOLOGICAL CONSTRAINTS FOR SENSE OF DIRECTION. International Journal of Foundations of Computer Science, 1998, 09, 179-197.	0.8	7
76	ON RELIABILITY ANALYSIS OF CHORDAL RINGS. Journal of Circuits, Systems and Computers, 1995, 05, 199-213.	1.0	2
77	Efficient elections in chordal ring networks. Algorithmica, 1989, 4, 437-446.	1.0	38
78	Optimal Parallel Merging and Sorting Without Memory Conflicts. IEEE Transactions on Computers, 1987, C-36, 1367-1369.	2.4	72
79	Shout echo selection in distributed files. Networks, 1986, 16, 77-86.	1.6	18
80	The un-merging problem. ACM SIGACT News, 1985, 17, 5-6.	0.1	2