Lasse Johansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11148537/publications.pdf

Version: 2024-02-01

		471371	501076
30	1,295	17	28
papers	citations	h-index	g-index
37	37	37	1410
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmospheric Environment, 2017, 167, 403-415.	1.9	291
2	Cleaner fuels for ships provide public health benefits with climate tradeoffs. Nature Communications, 2018, 9, 406.	5.8	279
3	A Comprehensive Inventory of the Ship Traffic Exhaust Emissions in the Baltic Sea from 2006 to 2009. Ambio, 2014, 43, 311-324.	2.8	81
4	Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models. Atmospheric Chemistry and Physics, 2019, 19, 7019-7053.	1.9	68
5	Air quality and radiative impacts of Arctic shipping emissions in the summertime in northern Norway: from the local to the regional scale. Atmospheric Chemistry and Physics, 2016, 16, 2359-2379.	1.9	56
6	Costs and benefits of low-sulphur fuel standard for Baltic Sea shipping. Journal of Environmental Management, 2016, 184, 431-440.	3.8	41
7	Fusion of meteorological and air quality data extracted from the web for personalized environmental information services. Environmental Modelling and Software, 2015, 64, 143-155.	1.9	39
8	Impact of a nitrogen emission control area (NECA) on the future air quality and nitrogen deposition to seawater in the Baltic Sea region. Atmospheric Chemistry and Physics, 2019, 19, 1721-1752.	1.9	39
9	Urban population exposure to NO emissions from local shipping in three Baltic Sea harbour cities – a generic approach. Atmospheric Chemistry and Physics, 2019, 19, 9153-9179.	1.9	36
10	Atmospheric emissions of European SECA shipping: long-term projections. WMU Journal of Maritime Affairs, 2013, 12, 129-145.	1.4	32
11	Effect of ship emissions on O3 in the Yangtze River Delta region of China: Analysis of WRF-Chem modeling. Science of the Total Environment, 2019, 683, 360-370.	3.9	32
12	The impact of ship emissions on air quality and human health in the Gothenburg area – Part 1: 2012 emissions. Atmospheric Chemistry and Physics, 2020, 20, 7509-7530.	1.9	30
13	Environmental impacts of grey water discharge from ships in the Baltic Sea. Marine Pollution Bulletin, 2020, 152, 110891.	2.3	29
14	Modelling of discharges from Baltic Sea shipping. Ocean Science, 2021, 17, 699-728.	1.3	29
15	Modelling of ships as a source of underwater noise. Ocean Science, 2018, 14, 1373-1383.	1.3	27
16	Shipborne nutrient dynamics and impact on the eutrophication in the Baltic Sea. Science of the Total Environment, 2019, 671, 189-207.	3.9	27
17	Effects of strengthening the Baltic Sea ECA regulations. Atmospheric Chemistry and Physics, 2019, 19, 13469-13487.	1.9	27
18	Risk assessment of bilge water discharges in two Baltic shipping lanes. Marine Pollution Bulletin, 2018, 126, 575-584.	2.3	18

#	Article	IF	CITATIONS
19	The impact of ship emissions on air quality and human health in the Gothenburg area – Part II: Scenarios for 2040. Atmospheric Chemistry and Physics, 2020, 20, 10667-10686.	1.9	17
20	Ontology-centered environmental information delivery for personalized decision support. Expert Systems With Applications, 2015, 42, 5032-5046.	4.4	15
21	Model for leisure boat activities and emissions – implementation for the Baltic Sea. Ocean Science, 2020, 16, 1143-1163.	1.3	15
22	An operational urban air quality model ENFUSER, based on dispersion modelling and data assimilation. Environmental Modelling and Software, 2022, 156, 105460.	1.9	12
23	Estimates of Source Spectra of Ships from Long Term Recordings in the Baltic Sea. Frontiers in Marine Science, 2017, 4, .	1.2	10
24	Trends in Vessel Atmospheric Emissions in the Central Mediterranean over the Last 10 Years and during the COVID-19 Outbreak. Journal of Marine Science and Engineering, 2021, 9, 762.	1.2	9
25	Modelling spatial dispersion of contaminants from shipping lanes in the Baltic Sea. Marine Pollution Bulletin, 2021, 173, 112985.	2.3	8
26	Evaluation of Air Quality Using Dynamic Land-use Regression and Fusion of Environmental Information. , $2015, \ldots$		5
27	Getting the environmental information across: from the Web to the user. Expert Systems, 2015, 32, 405-432.	2.9	4
28	Phosphorus flows on ships: Case study from the Baltic Sea. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2019, 233, 528-539.	0.3	3
29	Fusion of Air Quality Information: Evaluation of the Enfuser-Methdoology in Finland and a Case Study in China. Springer Proceedings in Complexity, 2018, , 213-218.	0.2	1
30	CITYZER observation network and data delivery system. Geoscientific Instrumentation, Methods and Data Systems, 2020, 9, 397-406.	0.6	0