
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11147408/publications.pdf Version: 2024-02-01

Δτιίι Ριφομίτ

#	Article	IF	CITATIONS
1	Substituted Aryl Benzylamines as Potent and Selective Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 3. Molecules, 2021, 26, 7166.	1.7	1
2	C-3- and C-4-Substituted Bicyclic Coumarin Sulfamates as Potent Steroid Sulfatase Inhibitors. ACS Omega, 2018, 3, 10748-10772.	1.6	21
3	The In Vitro and In Vivo Activity of the Microtubule Disruptor STX140 Is Mediated by Hif-1 Alpha and CAIX Expression. Anticancer Research, 2015, 35, 5249-61.	0.5	8
4	Synthesis and Structure–Activity Relationship Studies of Derivatives of the Dual Aromatase–Sulfatase Inhibitor 4â€{[(4 yanophenyl)(4 <i>H</i> â€1,2,4â€triazolâ€4â€yl)amino]methyl}phenyl sulfamate. ChemMed0 2013, 8, 779-799.	Cheen,	26
5	STX2171, a 17β-hydroxysteroid dehydrogenase type 3 inhibitor, is efficacious in vivo in a novel hormone-dependent prostate cancer model. Endocrine-Related Cancer, 2013, 20, 53-64.	1.6	17
6	Steroid sulfatase inhibitors for estrogen- and androgen-dependent cancers. Journal of Endocrinology, 2012, 212, 99-110.	1.2	118
7	Synthesis and evaluation of analogues of estrone-3-O-sulfamate as potent steroid sulfatase inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 2506-2519.	1.4	43
8	Development of steroid sulfatase inhibitors. Molecular and Cellular Endocrinology, 2011, 340, 175-185.	1.6	53
9	Steroid sulfatase: A pivotal player in estrogen synthesis and metabolism. Molecular and Cellular Endocrinology, 2011, 340, 154-160.	1.6	55
10	Steroid sulfatase inhibitors: Promising new tools for breast cancer therapy?. Journal of Steroid Biochemistry and Molecular Biology, 2011, 125, 39-45.	1.2	49
11	Hybrid Dual Aromatase-Steroid Sulfatase Inhibitors with Exquisite Picomolar Inhibitory Activity. ACS Medicinal Chemistry Letters, 2011, 2, 243-247.	1.3	34
12	Aromatase and Dual Aromatase‣teroid Sulfatase Inhibitors from the Letrozole and Vorozole Templates. ChemMedChem, 2011, 6, 1423-1438.	1.6	55
13	Structure–Activity Relationship for the Firstâ€inâ€Class Clinical Steroid Sulfatase Inhibitor Irosustat (STX64, BN83495). ChemMedChem, 2011, 6, 2019-2034.	1.6	57
14	Highly Potent First Examples of Dual Aromataseâ^'Steroid Sulfatase Inhibitors based on a Biphenyl Template. Journal of Medicinal Chemistry, 2010, 53, 2155-2170.	2.9	76
15	Bicyclic Derivatives of the Potent Dual Aromatase–Steroid Sulfatase Inhibitor 2â€Bromoâ€4â€{[(4â€cyanophenyl)(4 <i>H</i> àê€,2,4â€triazolâ€4â€yl)amino]methyl}phenylsulfamate: Synthes Crystal Structure, and inâ€vitro and inâ€vivo Activities. ChemMedChem, 2010, 5, 1577-1593.	sis j.6 AR,	24
16	The Development of Steroid Sulfatase Inhibitors for Hormoneâ€Dependent Cancer Therapy. Annals of the New York Academy of Sciences, 2009, 1155, 80-87.	1.8	37
17	Development of hormone-dependent prostate cancer models for the evaluation of inhibitors of 17β-hydroxysteroid dehydrogenase Type 3. Molecular and Cellular Endocrinology, 2009, 301, 251-258.	1.6	16
18	Efficacy of three potent steroid sulfatase inhibitors: pre-clinical investigations for their use in the treatment of hormone-dependent breast cancer. Breast Cancer Research and Treatment, 2008, 111, 129-138.	1.1	34

#	Article	IF	CITATIONS
19	2-MeOE2bisMATE and 2-EtE2bisMATE induce cell cycle arrest and apoptosis in breast cancer xenografts as shown by a novel exÂvivo technique. Breast Cancer Research and Treatment, 2008, 111, 251-260.	1.1	29
20	Synthesis of Aromatase Inhibitors and Dual Aromatase Steroid Sulfatase Inhibitors by Linking an Arylsulfamate Motif to 4â€(4 <i>H</i> â€1,2,4â€triazolâ€4â€ylamino)benzonitrile: SAR, Crystal Structures, in v and in vivo Activities. ChemMedChem, 2008, 3, 1708-1730.	ittø	25
21	17βâ€hydroxysteroid dehydrogenase Type 1, and not Type 12, is a target for endocrine therapy of hormoneâ€dependent breast cancer. International Journal of Cancer, 2008, 122, 1931-1940.	2.3	99
22	Novel inhibitors of 17β-hydroxysteroid dehydrogenase type 1: Templates for design. Bioorganic and Medicinal Chemistry, 2008, 16, 4438-4456.	1.4	36
23	Chiral Aromatase and Dual Aromataseâ``Steroid Sulfatase Inhibitors from the Letrozole Template: Synthesis, Absolute Configuration, and In Vitro Activity. Journal of Medicinal Chemistry, 2008, 51, 4226-4238.	2.9	80
24	Effects of mutations and glycosylations on STS activity: A site-directed mutagenesis study. Molecular and Cellular Endocrinology, 2008, 283, 76-82.	1.6	7
25	Structure–Activity Relationships of C-17 Cyano-Substituted Estratrienes as Anticancer Agents. Journal of Medicinal Chemistry, 2008, 51, 1295-1308.	2.9	50
26	Design and validation of specific inhibitors of 17Â-hydroxysteroid dehydrogenases for therapeutic application in breast and prostate cancer, and in endometriosis. Endocrine-Related Cancer, 2008, 15, 665-692.	1.6	114
27	A New Therapeutic Strategy against Hormone-Dependent Breast Cancer: The Preclinical Development of a Dual Aromatase and Sulfatase Inhibitor. Clinical Cancer Research, 2008, 14, 6469-6477.	3.2	37
28	Anticancer steroid sulfatase inhibitors: synthesis of a potent fluorinated second-generation agent, <i>in vitro</i> and <i>in vivo</i> activities, molecular modeling, and protein crystallography. Molecular Cancer Therapeutics, 2008, 7, 2435-2444.	1.9	39
29	Recent Developments of Steroid Sulfatase Inhibitors as Anti-Cancer Agents. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8, 732-738.	0.9	33
30	The Use of Steroid Sulfatase Inhibitors as a Novel Therapeutic Strategy Against Hormone-Dependent Endometrial Cancer. Endocrinology, 2008, 149, 4035-4042.	1.4	39
31	Steroid Sulfatase: A New Target for the Endocrine Therapy of Breast Cancer. Oncologist, 2007, 12, 370-374.	1.9	92
32	Dual aromatase–sulfatase inhibitors based on the anastrozole template: synthesis, in vitro SAR, molecular modelling and in vivo activity. Organic and Biomolecular Chemistry, 2007, 5, 2940.	1.5	57
33	Dual Aromataseâ^'Steroid Sulfatase Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 3540-3560.	2.9	75
34	2-Substituted Estradiol Bis-sulfamates, Multitargeted Antitumor Agents:Â Synthesis, In Vitro SAR, Protein Crystallography, and In Vivo Activityâ€. Journal of Medicinal Chemistry, 2006, 49, 7683-7696.	2.9	98
35	Modification of Estrone at the 6, 16, and 17 Positions:  Novel Potent Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1. Journal of Medicinal Chemistry, 2006, 49, 1325-1345.	2.9	70
36	Novel, potent inhibitors of 17β-hydroxysteroid dehydrogenase type 1. Molecular and Cellular Endocrinology, 2006, 248, 204-207.	1.6	23

#	Article	IF	CITATIONS
37	17β-Hydroxysteroid dehydrogenase Type 1 and Type 2: Association between mRNA expression and activity in cell lines. Molecular and Cellular Endocrinology, 2006, 248, 246-249.	1.6	31
38	Focused Libraries of 16-Substituted Estrone Derivatives and Modified E-Ring Steroids: Inhibitors of 17ß-Hydroxysteroid Dehydrogenase Typeâ€1. ChemMedChem, 2006, 1, 464-481.	1.6	36
39	In vivo Efficacy of STX213, A Second-Generation Steroid Sulfatase Inhibitor, for Hormone-Dependent Breast Cancer Therapy. Clinical Cancer Research, 2006, 12, 5543-5549.	3.2	62
40	Phase I Study of STX 64 (667 Coumate) in Breast Cancer Patients: The First Study of a Steroid Sulfatase Inhibitor. Clinical Cancer Research, 2006, 12, 1585-1592.	3.2	225
41	E-Ring Modified Steroids as Novel Potent Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1. Journal of Medicinal Chemistry, 2005, 48, 5749-5770.	2.9	78
42	Inhibition of MDA-MB-231 cell cycle progression and cell proliferation by C-2-substituted oestradiolmono- andbis-3-O-sulphamates. International Journal of Cancer, 2005, 117, 150-159.	2.3	24
43	Crystal structure of human carbonic anhydrase II at 1.95ÂÃ resolution in complex with 667-coumate, a novel anti-cancer agent. Biochemical Journal, 2005, 385, 715-720.	1.7	55
44	First Crystal Structures of Human Carbonic Anhydrase II in Complex with Dual Aromataseâ^'Steroid Sulfatase Inhibitorsâ€,‡. Biochemistry, 2005, 44, 6858-6866.	1.2	42
45	A-Ring-Substituted Estrogen-3-O-sulfamates:Â Potent Multitargeted Anticancer Agents. Journal of Medicinal Chemistry, 2005, 48, 5243-5256.	2.9	68
46	A letrozole-based dual aromatase–sulphatase inhibitor with in vivo activity. Journal of Steroid Biochemistry and Molecular Biology, 2005, 94, 123-130.	1.2	42
47	Anti-cancer activities of novel D-ring modified 2-substituted estrogen-3-O-sulfamates. Journal of Steroid Biochemistry and Molecular Biology, 2005, 94, 239-251.	1.2	43
48	Novel and Potent 17β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 2759-2762.	2.9	53
49	Inhibition ofin vitro angiogenesis by 2-methoxy- and 2-ethyl-estrogen sulfamates. International Journal of Cancer, 2004, 109, 533-540.	2.3	60
50	Synthesis, in vitro and in vivo activity of benzophenone-based inhibitors of steroid sulfatase. Bioorganic and Medicinal Chemistry, 2004, 12, 2759-2772.	1.4	42
51	2-Alkylsulfanyl estrogen derivatives: synthesis of a novel class of multi-targeted anti-tumour agents. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3135-3138.	1.0	35
52	2-Difluoromethyloestrone 3-O-sulphamate, a highly potent steroid sulphatase inhibitor. Biochemical and Biophysical Research Communications, 2004, 317, 169-175.	1.0	40
53	The role of steroid sulphatase in regulating the oestrogenicity of oestrogen sulphamates. Biochemical and Biophysical Research Communications, 2004, 322, 217-222.	1.0	22
54	Docking studies of sulphamate inhibitors of estrone sulphatase in human carbonic anhydrase II. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 863-865.	1.0	41

#	Article	IF	CITATIONS
55	D-Ring Modified Estrone Derivatives as Novel Potent Inhibitors of Steroid Sulfatase. Bioorganic and Medicinal Chemistry, 2003, 11, 1685-1700.	1.4	59
56	First Dual Aromatase-Steroid Sulfatase Inhibitors. Journal of Medicinal Chemistry, 2003, 46, 3193-3196.	2.9	76
57	Novel D-ring modified steroid derivatives as potent, non-estrogenic, steroid sulfatase inhibitors with in vivo activity. Journal of Steroid Biochemistry and Molecular Biology, 2003, 84, 343-349.	1.2	40
58	Inhibition of MCF-7 breast cancer cell proliferation and in vivo steroid sulphatase activity by 2-methoxyoestradiol-bis-sulphamate. Journal of Steroid Biochemistry and Molecular Biology, 2003, 84, 351-358.	1.2	48
59	Estrone 3-Sulfate Mimics, Inhibitors of Estrone Sulfatase Activity:Â Homology Model Construction and Docking Studiesâ€. Biochemistry, 2002, 41, 14801-14814.	1.2	23
60	The role of cytokines in regulating estrogen synthesis: implications for the etiology of breast cancer. Breast Cancer Research, 2002, 4, 65-9.	2.2	211
61	Potent active site-directed inhibition of steroid sulphatase by tricyclic coumarin-based sulphamates. Chemistry and Biology, 2000, 7, 773-791.	6.2	149
62	Synthesis and Biological Activity of the Superestrogen (E)-17-Oximino-3-O-sulfamoyl-1,3,5(10)-estratriene:  X-ray Crystal Structure of (E)-17-Oximino-3-hydroxy-1,3,5(10)-estratriene. Journal of Medicinal Chemistry, 1999, 42, 3188-3192.	2.9	17
63	Steroidal and Nonsteroidal Sulfamates as Potent Inhibitors of Steroid Sulfatase. Journal of Medicinal Chemistry, 1998, 41, 1068-1083.	2.9	146
64	Estrone sulfonates as inhibitors of estrone sulfatase. Steroids, 1997, 62, 346-350.	0.8	37
65	Oestrone 3-O-(N-acetyl)sulphamate, a potential molecular probe of the active site of oestrone sulphatase. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 3075-3080.	1.0	27
66	Heteroatom-substituted analogues of the active-site directed inhibitor estra-1,3,5(10)-trien-17-one-3-sulphamate inhibit estrone sulphatase by a different mechanism. Journal of Steroid Biochemistry and Molecular Biology, 1996, 57, 79-88.	1.2	76
67	Active Site Directed Inhibition of Estrone Sulfatase by Nonsteroidal Coumarin Sulfamates. Journal of Medicinal Chemistry, 1996, 39, 1349-1351.	2.9	69
68	Inactivation of Steroid Sulfatase by an Active Site-Directed Inhibitor, Estrone-3-O-Sulfamate. Biochemistry, 1995, 34, 11508-11514.	1.2	167
69	Estrone sulfamates: potent inhibitors of estrone sulfatase with therapeutic potential. Journal of Medicinal Chemistry, 1994, 37, 219-221.	2.9	215
70	Phosphonates and thiophosphonates as sulfate surrogates: synthesis of estrone 3-methylthiophosphonate, a potent inhibitor of estrone sulfatase. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 313-318.	1.0	35