Mark Van Hoeij

List of Publications by Year in descending order

Source: https:|/exaly.com/author-pdf/11147306/publications.pdf
Version: 2024-02-01

A Divisor Formula and a Bound on the $\$ \$$ mathbb $\{\mathrm{Q}\} \$ \$$-Gonality of the Modular Curve $\$ \$ \mathrm{X} _1(\mathrm{~N}) \$ \$$.
Research in Number Theory, 2021, 7,1 .

2 Sporadic cubic torsion. Algebra and Number Theory, 2021, 15, 1837-1864.
0.6

Computing an Order-Complete Basis for $\$ \$ M^{\wedge}\{$ infty $\}(N) \$ \$$ and Applications. Springer Proceedings in Mathematics and Statistics, 2021, , 355-366.

Stringy Hirzebruch classes of Weierstrass fibrations. Communications in Number Theory and Physics, 2020, 14, 453-485.

The complexity of computing all subfields of an algebraic number field. Journal of Symbolic
$5 \quad \begin{aligned} & \text { The complexity of computing all su } \\ & \text { Computation, 2019, 93, 161-182. }\end{aligned}$
$0.8 \quad 1$

Classifying (almost)-Belyi maps with five exceptional points. Indagationes Mathematicae, 2019, 30,
136-156.

Fast algorithm for factoring difference operators. ACM Communications in Computer Algebra, 2019,
$7 \quad$ 53, 150-152.
0.4

6

8 Methods for simplifying differential equations. ACM Communications in Computer Algebra, 2019, 53, 93-95.

Reduction-based creative telescoping for fuchsian D-finite functions. Journal of Symbolic
Computation, 2018, 85, 108-127.

Hypergeometric expressions for generating functions of walks with small steps in the quarter plane.
European Journal of Combinatorics, 2017, 61, 242-275.

Computing hypergeometric solutions of second order linear differential equations using quotients
of formal solutions and integral bases. Journal of Symbolic Computation, 2017, 83, 254-271.

12 Functional Decomposition Using Principal Subfields. , 2017, , .
o

Belyi functions for hyperbolic hypergeometric-to-Heun transformations. Journal of Algebra, 2015, 441,
609-659.
0.7

20
Gonality of the modular curve <mml:math xmins.mml="http:/|www.w3.org/1998/Math/MathML" altimg="sil.gif"
14 overflow="scroll">mml:msubmml:mrowmml:miX</mml:mi></mml:mrow>mml:mrowmml:mn1</mml:n@n></mm|xnrow></m stretchy="false">(</mml:mo>mml:miN</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>.
Journal of Algebra, 2014, 417, 52-71
15 Generating subfields. Journal of Symbolic Computation, 2013, 52, 17-34.
0.8

11

[^0]Isomorphisms of algebraic number fields. Journal De Theorie Des Nombres De Bordeaux, 2012, 24,
293-305.

Finding all bessel type solutions for linear differential equations with rational function
coefficients. , 2010, , .

Factoring univariate polynomials over the rationals. ACM Communications in Computer Algebra, 2009,
0.5

30

30 Closed form solutions of linear odes having elliptic function coefficients. , 2004, , .
6
A modular algorithm for computing the exponential solutions of a linear differential operator.
31 Journal of Symbolic Computation, 2004, 38, 1043-1076.

32 Factoring Polynomials and the Knapsack Problem. Journal of Number Theory, 2002, 95, 167-189.
0.4

65

33 Factoring Polynomials and the Knapsack Problem. Journal of Number Theory, 2002, 95, 167-189. 46

34 Computing Riemann matrices of algebraic curves. Physica D: Nonlinear Phenomena, 2001, 152-153, 28-46.
2.8

66

Integration of solutions of linear functional equations. Integral Transforms and Special Functions,
$1999,8,3-12$.
1.2

31

Factorization of Differential Operators with Rational Functions Coefficients. Journal of Symbolic
Computation, 1997, 24, 537-561.

Rational solutions of the mixed differential equation and its application to factorization of
differential operators., 1996, , .

An Algorithm for Computing an Integral Basis in an Algebraic Function Field. Journal of Symbolic Computation, 1994, 18, 353-363.

[^0]: Gradual Sub-lattice Reduction and a New Complexity forÂFactoring Polynomials. Algorithmica, 2012, 63,
 616-633.

