
William T Self

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11146977/publications.pdf Version: 2024-02-01

WILLIAM T SELE

#	Article	IF	CITATIONS
1	<scp>d</scp> -Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile. Journal of Bacteriology, 2022, 204, .	1.0	6
2	Exploring the selenium-over-sulfur substrate specificity and kinetics of a bacterial selenocysteine lyase. Biochimie, 2021, 182, 166-176.	1.3	3
3	Using CRISPR-Cas9-mediated genome editing to generate C. difficile mutants defective in selenoproteins synthesis. Scientific Reports, 2017, 7, 14672.	1.6	79
4	Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environmental Science: Nano, 2015, 2, 33-53.	2.2	341
5	Cerium oxide nanoparticles accelerate the decay of peroxynitrite (ONOOâ^'). Drug Delivery and Translational Research, 2013, 3, 375-379.	3.0	85
6	Oxygenated Functional Group Density on Graphene Oxide: Its Effect on Cell Toxicity. Particle and Particle Systems Characterization, 2013, 30, 148-157.	1.2	173
7	Cellular Interaction and Toxicity Depend on Physicochemical Properties and Surface Modification of Redox-Active Nanomaterials. ACS Nano, 2013, 7, 4855-4868.	7.3	179
8	Proline-Dependent Regulation of Clostridium difficile Stickland Metabolism. Journal of Bacteriology, 2013, 195, 844-854.	1.0	185
9	Immunomodulation and T Helper TH1/TH2 Response Polarization by CeO2 and TiO2 Nanoparticles. PLoS ONE, 2013, 8, e62816.	1.1	80
10	Exposure to Silver Nanoparticles Inhibits Selenoprotein Synthesis and the Activity of Thioredoxin Reductase. Environmental Health Perspectives, 2012, 120, 56-61.	2.8	73
11	Cerium oxide nanoparticles scavenge nitric oxide radical (˙NO). Chemical Communications, 2012, 48, 4896.	2.2	222
12	A facile synthesis of PLGA encapsulated cerium oxide nanoparticles: release kinetics and biological activity. Nanoscale, 2012, 4, 2597.	2.8	48
13	The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in in intracellular environments. Biomaterials, 2012, 33, 7746-7755.	5.7	247
14	Up conversion luminescence of Yb3+–Er3+ codoped CeO2 nanocrystals with imaging applications. Journal of Luminescence, 2012, 132, 743-749.	1.5	59
15	A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials, 2011, 32, 6745-6753.	5.7	285
16	A Selenium-Dependent Xanthine Dehydrogenase Triggers Biofilm Proliferation in <i>Enterococcus faecalis</i> through Oxidant Production. Journal of Bacteriology, 2011, 193, 1643-1652.	1.0	42
17	Multicolored redox active upconverter cerium oxide nanoparticle for bio-imaging and therapeutics. Chemical Communications, 2010, 46, 6915.	2.2	118
18	Tuning Hydrated Nanoceria Surfaces: Experimental/Theoretical Investigations of Ion Exchange and Implications in Organic and Inorganic Interactions. Langmuir, 2010, 26, 7188-7198.	1.6	35

WILLIAM T SELF

#	Article	IF	CITATIONS
19	Redox-active radical scavenging nanomaterials. Chemical Society Reviews, 2010, 39, 4422.	18.7	458
20	Specific and Nonspecific Incorporation of Selenium into Macromolecules. , 2010, , 121-148.		3
21	Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Molecular BioSystems, 2010, 6, 1813.	2.9	144
22	Nanoceria exhibit redox state-dependent catalase mimetic activity. Chemical Communications, 2010, 46, 2736.	2.2	912
23	Inhibition of Selenium Metabolism in the Oral Pathogen <i>Treponema denticola</i> . Journal of Bacteriology, 2009, 191, 4035-4040.	1.0	39
24	Exposure to monomethylarsonous acid (MMAIII) leads to altered selenoprotein synthesis in a primary human lung cell model. Toxicology and Applied Pharmacology, 2009, 239, 130-136.	1.3	20
25	Protonated Nanoparticle Surface Governing Ligand Tethering and Cellular Targeting. ACS Nano, 2009, 3, 1203-1211.	7.3	82
26	PEGylated Nanoceria as Radical Scavenger with Tunable Redox Chemistry. Journal of the American Chemical Society, 2009, 131, 14144-14145.	6.6	302
27	Exposure to Titanium Dioxide Nanomaterials Provokes Inflammation of an <i>in Vitro</i> Human Immune Construct. ACS Nano, 2009, 3, 2523-2532.	7.3	152
28	The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials, 2008, 29, 2705-2709.	5.7	813
29	High affinity selenium uptake in a keratinocyte model. FEBS Letters, 2008, 582, 299-304.	1.3	33
30	Fenton-Like Reaction Catalyzed by the Rare Earth Inner Transition Metal Cerium. Environmental Science & Technology, 2008, 42, 5014-5019.	4.6	306
31	Orphan SelD proteins and selenium-dependent molybdenum hydroxylases. Biology Direct, 2008, 3, 4.	1.9	40
32	Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chemical Communications, 2007, , 1056.	2.2	1,009
33	Impact of Trivalent Arsenicals on Selenoprotein Synthesis. Environmental Health Perspectives, 2007, 115, 346-353.	2.8	50
34	Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803. BMC Biotechnology, 2007, 7, 25.	1.7	56
35	Bioavailability of selenium from the selenotrisulphide derivative of lipoic acid. Photodermatology Photoimmunology and Photomedicine, 2006, 22, 315-323.	0.7	7
36	Analysis of Proline Reduction in the Nosocomial Pathogen Clostridium difficile. Journal of Bacteriology, 2006, 188, 8487-8495.	1.0	145

WILLIAM T SELF

#	Article	IF	CITATIONS
37	Expression and Regulation of a Silent Operon, hyf , Coding for Hydrogenase 4 Isoenzyme in Escherichia coli. Journal of Bacteriology, 2004, 186, 580-587.	1.0	89
38	Cofactor Determination and Spectroscopic Characterization of the Selenium-Dependent Purine Hydroxylase fromClostridium purinolyticum. Biochemistry, 2003, 42, 11382-11390.	1.2	28
39	Regulation of Purine Hydroxylase and Xanthine Dehydrogenase from Clostridium purinolyticum in Response to Purines, Selenium, and Molybdenum. Journal of Bacteriology, 2002, 184, 2039-2044.	1.0	28
40	Molybdate transport. Research in Microbiology, 2001, 152, 311-321.	1.0	129
41	Transcriptional regulation of the moe (molybdate metabolism) operon of Escherichia coli. Archives of Microbiology, 2001, 175, 178-188.	1.0	21
42	N-terminal truncations in the FhlA protein result in formate- and MoeA-independent expression of the hyc (formate hydrogenlyase) operon of Escherichia coli. Microbiology (United Kingdom), 2001, 147, 3093-3104.	0.7	31
43	Isolation and characterization of mutated FhIA proteins which activate transcription of thehycoperon (formate hydrogenlyase) ofEscherichia coliin the absence of molybdate. FEMS Microbiology Letters, 2000, 184, 47-52.	0.7	26
44	An Analysis of the Binding of Repressor Protein ModE to modABCD (Molybdate Transport) Operator/Promoter DNA of Escherichia coli. Journal of Biological Chemistry, 1999, 274, 24308-24315.	1.6	38
45	Transcriptional regulation of molybdoenzyme synthesis in Escherichia coli in response to molybdenum: ModE-molybdate, a repressor of the modABCD (molybdate transport) operon is a secondary transcriptional activator for the hyc and nar operons. Microbiology (United Kingdom), 1999, 145, 41-55.	0.7	61
46	Molybdate-dependent transcription ofhycandnaroperons ofEscherichia colirequires MoeA protein and ModE-molybdate. FEMS Microbiology Letters, 1998, 169, 111-116.	0.7	26