
Paul H Mayrhofer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1114688/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructural design of hard coatings. Progress in Materials Science, 2006, 51, 1032-1114.	16.0	793
2	Self-organized nanostructures in the Ti–Al–N system. Applied Physics Letters, 2003, 83, 2049-2051.	1.5	529
3	Thermal stability of Al–Cr–N hard coatings. Scripta Materialia, 2006, 54, 1847-1851.	2.6	224
4	Microstructure and mechanical/thermal properties of Cr–N coatings deposited by reactive unbalanced magnetron sputtering. Surface and Coatings Technology, 2001, 142-144, 78-84.	2.2	207
5	Influence of the Al distribution on the structure, elastic properties, and phase stability of supersaturated Ti1â^'xAlxN. Journal of Applied Physics, 2006, 100, 094906.	1.1	202
6	Thermal stability and oxidation resistance of Ti–Al–N coatings. Surface and Coatings Technology, 2012, 206, 2954-2960.	2.2	202
7	ZrN/Cu nanocomposite film—a novel superhard material. Surface and Coatings Technology, 1999, 120-121, 179-183.	2.2	200
8	Self-organized nanocolumnar structure in superhard TiB2 thin films. Applied Physics Letters, 2005, 86, 131909.	1.5	192
9	A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings. Thin Solid Films, 2002, 415, 151-159.	0.8	190
10	Structure, mechanical and tribological properties of sputtered Ti1–xAlxN coatings with 0.5â‰ ¤ â‰ 9 .75. Surface and Coatings Technology, 2005, 200, 2358-2365.	2.2	181
11	Microstructure and properties of nanocomposite Ti–B–N and Ti–B–C coatings. Surface and Coatings Technology, 1999, 120-121, 405-411.	2.2	170
12	Magnéli phase formation of PVD Mo–N and W–N coatings. Surface and Coatings Technology, 2006, 201, 3335-3341.	2.2	159
13	Decomposition pathways in age hardening of Ti-Al-N films. Journal of Applied Physics, 2011, 110, .	1.1	152
14	High-entropy ceramic thin films; A case study on transition metal diborides. Scripta Materialia, 2018, 149, 93-97.	2.6	152
15	Structure–property relationships in single- and dual-phase nanocrystalline hard coatings. Surface and Coatings Technology, 2003, 174-175, 725-731.	2.2	148
16	Calorimetric evidence for frictional self-adaptation of TiAlN/VN superlattice coatings. Surface and Coatings Technology, 2004, 177-178, 341-347.	2.2	142
17	Structure and properties of hard and superhard Zr–Cu–N nanocomposite coatings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 289, 189-197.	2.6	139
18	Trends in the elastic response of binary early transition metal nitrides. Physical Review B, 2012, 85, .	1.1	136

#	Article	IF	CITATIONS
19	Ab initio calculated binodal and spinodal of cubic Ti1â^'xAlxN. Applied Physics Letters, 2006, 88, 071922.	1.5	130
20	Superlattice effect for enhanced fracture toughness of hard coatings. Scripta Materialia, 2016, 124, 67-70.	2.6	128
21	Oxidation kinetics of sputtered Cr–N hard coatings. Surface and Coatings Technology, 2001, 146-147, 222-228.	2.2	125
22	A new low-friction concept for Ti1â^'xAlxN based coatings in high-temperature applications. Surface and Coatings Technology, 2004, 188-189, 358-363.	2.2	120
23	High-temperature properties of nanocomposite TiBxNy and TiBxCy coatings. Surface and Coatings Technology, 2000, 133-134, 131-137.	2.2	117
24	A New Low Friction Concept for High Temperatures: Lubricious Oxide Formation on Sputtered VN Coatings. Tribology Letters, 2004, 17, 751-756.	1.2	115
25	Thermal stability of PVD hard coatings. Vacuum, 2003, 71, 279-284.	1.6	113
26	Structure and phase evolution of Cr–Al–N coatings during annealing. Surface and Coatings Technology, 2008, 202, 4935-4938.	2.2	112
27	Phase stability and alloy-related trends in Ti–Al–N, Zr–Al–N and Hf–Al–N systems from first principles. Surface and Coatings Technology, 2011, 206, 1698-1704.	2.2	112
28	Structure, elastic properties and phase stability of Cr1–xAlxN. Acta Materialia, 2008, 56, 2469-2475.	3.8	109
29	Energetic balance and kinetics for the decomposition of supersaturated Ti1â^'xAlxN. Acta Materialia, 2007, 55, 1441-1446.	3.8	106
30	Increased thermal stability of Ti–Al–N thin films by Ta alloying. Surface and Coatings Technology, 2012, 211, 98-103.	2.2	104
31	Influence of oxide phase formation on the tribological behaviour of Ti–Al–V–N coatings. Surface and Coatings Technology, 2005, 200, 1731-1737.	2.2	103
32	Influence of Zr on structure, mechanical and thermal properties of Ti–Al–N. Thin Solid Films, 2011, 519, 5503-5510.	0.8	102
33	Thermal stability and oxidation resistance of arc evaporated TiAlN, TaAlN, TiAlTaN, and TiAlN/TaAlN coatings. Surface and Coatings Technology, 2014, 259, 599-607.	2.2	102
34	Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit. Thin Solid Films, 2010, 518, 5558-5564.	0.8	98
35	Low-stress superhard Tiî—,B films prepared by magnetron sputtering. Surface and Coatings Technology, 2003, 174-175, 744-753.	2.2	97
36	Structural stability and thermodynamics of CrN magnetic phases from <i>ab initio</i> calculations and experiment. Physical Review B, 2014, 90, .	1.1	95

#	Article	IF	CITATIONS
37	Fracture toughness and structural evolution in the TiAlN system upon annealing. Scientific Reports, 2017, 7, 16476.	1.6	93
38	The effect of yttrium incorporation on the oxidation resistance of Cr–Al–N coatings. Surface and Coatings Technology, 2008, 202, 5870-5875.	2.2	90
39	Three-dimensional atom probe investigations of Ti–Al–N thin films. Scripta Materialia, 2009, 61, 725-728.	2.6	88
40	Experimental and computational study on the phase stability of Al-containing cubic transition metal nitrides. Journal Physics D: Applied Physics, 2010, 43, 035302.	1.3	85
41	Structure–property relations of arc-evaporated Al–Cr–Si–N coatings. Surface and Coatings Technology, 2008, 202, 3555-3562.	2.2	78
42	Effects of structure and interfaces on fracture toughness of CrN/AlN multilayer coatings. Scripta Materialia, 2013, 68, 917-920.	2.6	77
43	Origin of high temperature oxidation resistance of Ti–Al–Ta–N coatings. Surface and Coatings Technology, 2014, 257, 78-86.	2.2	77
44	The influence of age-hardening on turning and milling performance of Ti–Al–N coated inserts. Surface and Coatings Technology, 2008, 202, 5158-5161.	2.2	76
45	Temperature driven evolution of thermal, electrical, and optical properties of Ti–Al–N coatings. Acta Materialia, 2012, 60, 2091-2096.	3.8	75
46	Surface energies of AlN allotropes from first principles. Scripta Materialia, 2012, 67, 760-762.	2.6	73
47	Toughness enhancement in TiN/WN superlattice thin films. Acta Materialia, 2019, 172, 18-29.	3.8	72
48	Age hardening of PACVD TiBN thin films. Scripta Materialia, 2005, 53, 241-245.	2.6	71
49	TiAlN based nanoscale multilayer coatings designed to adapt their tribological properties at elevated temperatures. Thin Solid Films, 2005, 485, 160-168.	0.8	70
50	Mechanical Size-Effects in Miniaturized and Bulk Materials. Advanced Engineering Materials, 2006, 8, 1033-1045.	1.6	70
51	Pressure-dependent stability of cubic and wurtzite phases within the TiN–AlN and CrN–AlN systems. Scripta Materialia, 2010, 62, 349-352.	2.6	70
52	Structure and mechanical properties of CrN/TiN multilayer coatings prepared by a combined HIPIMS/UBMS deposition technique. Thin Solid Films, 2008, 517, 1239-1244.	0.8	68
53	Thermal stability and oxidation resistance of sputtered Ti Al Cr N hard coatings. Surface and Coatings Technology, 2017, 324, 48-56.	2.2	68
54	Compositional and structural evolution of sputtered Ti-Al-N. Thin Solid Films, 2009, 517, 6635-6641.	0.8	67

#	Article	IF	CITATIONS
55	Thermally induced transitions of CrN thin films. Scripta Materialia, 2007, 57, 249-252.	2.6	66
56	Point defects stabilise cubic Mo-N and Ta-N. Journal Physics D: Applied Physics, 2016, 49, 375303.	1.3	64
57	Microstructure and piezoelectric response of Y Al1â^'N thin films. Acta Materialia, 2015, 100, 81-89.	3.8	60
58	Mechanical properties and thermal stability of reactively sputtered multi-principal-metal Hf-Ta-Ti-V-Zr nitrides. Surface and Coatings Technology, 2020, 389, 125674.	2.2	60
59	Structure–property relations in Cr–C/a-C:H coatings deposited by reactive magnetron sputtering. Surface and Coatings Technology, 2005, 200, 1147-1150.	2.2	59
60	Thermal stability of superhard Ti–B–N coatings. Surface and Coatings Technology, 2007, 201, 6148-6153.	2.2	59
61	Experimental and computational study on the effect of yttrium on the phase stability of sputtered Cr–Al–Y–N hard coatings. Acta Materialia, 2010, 58, 2708-2715.	3.8	59
62	Self-Organized Nanostructures in Hard Ceramic Coatings. Advanced Engineering Materials, 2005, 7, 1071-1082.	1.6	58
63	Thermal decomposition routes of CrN hard coatings synthesized by reactive arc evaporation and magnetron sputtering. Thin Solid Films, 2008, 517, 568-574.	0.8	58
64	Phase stability and decomposition products of Ti–Al–Ta–N thin films. Applied Physics Letters, 2010, 97, .	1.5	57
65	Alloying-related trends from first principles: An application to the Ti–Al–X–N system. Journal of Applied Physics, 2013, 113, .	1.1	55
66	First-principles study of elastic properties of cubic Cr1â^'‹i›xPhysics, 2013, 113, .	1.1	55
67	The impact of nitrogen content and vacancies on structure and mechanical properties of Mo–N thin films. Journal of Applied Physics, 2016, 120, .	1.1	55
68	Ab initio inspired design of ternary boride thin films. Scientific Reports, 2018, 8, 9288.	1.6	54
69	Thermally induced self-hardening of nanocrystalline Ti–B–N thin films. Journal of Applied Physics, 2006, 100, 044301.	1.1	50
70	<i>In situ</i> observation of rapid reactions in nanoscale Ni–Al multilayer foils using synchrotron radiation. Applied Physics Letters, 2010, 97, .	1.5	50
71	Thermal stability and mechanical properties of sputtered (Hf,Ta,V,W,Zr)-diborides. Acta Materialia, 2020, 200, 559-569.	3.8	50
72	Structure and stability of phases within the NbN–AlN system. Journal Physics D: Applied Physics, 2010, 43, 145403.	1.3	49

#	Article	IF	CITATIONS
73	Structure of sputtered nanocomposite CrC[sub x]â^•a-C:H thin films. Journal of Vacuum Science & Technology B, 2006, 24, 1837.	1.3	48
74	Thermal stability and thermo-mechanical properties of magnetron sputtered Cr-Al-Y-N coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 29-35.	0.9	48
75	Thermal expansion of Ti-Al-N and Cr-Al-N coatings. Scripta Materialia, 2017, 127, 182-185.	2.6	48
76	Spinodal decomposition of cubic Ti _{1â^'<i>x</i>} Al _{<i>x</i>} N: Comparison between experiments and modeling. International Journal of Materials Research, 2007, 98, 1054-1059.	0.1	47
77	Environmental protection of \hat{I}^3 -TiAl based alloy Ti-45Al-8Nb by CrAlYN thin films and thermal barrier coatings. Intermetallics, 2010, 18, 479-486.	1.8	47
78	Effect of Hf on structure and age hardening of Ti–Al-N thin films. Surface and Coatings Technology, 2012, 206, 2667-2672.	2.2	47
79	Influence of CrN and AlN layer thicknesses on structure and mechanical properties of CrN/AlN superlattices. Thin Solid Films, 2013, 545, 375-379.	0.8	47
80	Phase stability, mechanical properties and thermal stability of Y alloyed Ti–Al–N coatings. Surface and Coatings Technology, 2013, 235, 174-180.	2.2	47
81	Influence of deposition conditions on texture development and mechanical properties of TiN coatings. International Journal of Materials Research, 2009, 100, 1052-1058.	0.1	45
82	Solid solution hardening of vacancy stabilized Ti W1â^'B2. Acta Materialia, 2015, 101, 55-61.	3.8	45
83	The influence of the ion bombardment on the optical properties of TiNx and ZrNx coatings. Surface and Coatings Technology, 1998, 108-109, 230-235.	2.2	44
84	Thermal stability of nanocomposite CrC/a-C:H thin films. Thin Solid Films, 2007, 515, 5411-5417.	0.8	44
85	Influence of Nb on the phase stability of Ti–Al–N. Scripta Materialia, 2010, 63, 807-810.	2.6	44
86	High-entropy oxide thin films based on Al–Cr–Nb–Ta–Ti. Vacuum, 2019, 168, 108850.	1.6	44
87	Yttrium-induced structural changes in sputtered Ti1â^'xAlxN thin films. Scripta Materialia, 2007, 57, 357-360.	2.6	42
88	Structural and mechanical evolution of reactively and non-reactively sputtered Zr–Al–N thin films during annealing. Surface and Coatings Technology, 2014, 244, 52-56.	2.2	42
89	Influence of Ta on the fracture toughness of arc evaporated Ti-Al-N. Vacuum, 2018, 150, 24-28.	1.6	42
90	Thermal conductivity and mechanical properties of AlN-based thin films. Journal of Applied Physics, 2016, 119, .	1.1	41

#	Article	IF	CITATIONS
91	Characterization of tribo-layers on self-lubricating plasma-assisted chemical-vapor-deposited TiN coatings. Thin Solid Films, 2004, 460, 125-132.	0.8	40
92	Hardness evolution of Al–Cr–N coatings under thermal load. Journal of Materials Research, 2008, 23, 2880-2885.	1.2	40
93	Vacancy-dependent stability of cubic and wurtzite Ti1â^'xAlxN. Surface and Coatings Technology, 2015, 275, 214-218.	2.2	40
94	Fracture toughness of Ti-Si-N thin films. International Journal of Refractory Metals and Hard Materials, 2018, 72, 78-82.	1.7	40
95	Low friction CrN/TiN multilayer coatings prepared by a hybrid high power impulse magnetron sputtering/DC magnetron sputtering deposition technique. Thin Solid Films, 2010, 518, 5553-5557.	0.8	39
96	Atom probe specimen preparation and 3D interfacial study of Ti–Al–N thin films. Surface and Coatings Technology, 2010, 204, 1811-1816.	2.2	39
97	Influence of bias potential and layer arrangement on structure and mechanical properties of arc evaporated Al–Cr–N coatings. Vacuum, 2014, 106, 49-52.	1.6	39
98	Computational and experimental studies on structure and mechanical properties of Mo–Al–N. Acta Materialia, 2016, 107, 273-278.	3.8	39
99	Recrystallization and grain growth of nanocomposite Ti–B–N coatings. Thin Solid Films, 2003, 440, 174-179.	0.8	38
100	Impact of yttrium on structure and mechanical properties of Cr–Al–N thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1336-1340.	0.9	38
101	Effect of nitrogen-incorporation on structure, properties and performance of magnetron sputtered CrB2. Surface and Coatings Technology, 2008, 202, 3088-3093.	2.2	38
102	Influence of Yttrium on the Thermal Stability of Ti-Al-N Thin Films. Materials, 2010, 3, 1573-1592.	1.3	38
103	Electronic origin of structure and mechanical properties in Y and Nb alloyed Ti–Al–N thin films. International Journal of Materials Research, 2011, 102, 735-742.	0.1	38
104	<i>Ab initio</i> study of the alloying effect of transition metals on structure, stability and ductility of CrN. Journal Physics D: Applied Physics, 2013, 46, 365301.	1.3	38
105	Substoichiometry and tantalum dependent thermal stability of α-structured W-Ta-B thin films. Scripta Materialia, 2018, 155, 5-10.	2.6	38
106	Improved Ti-Al-N coatings through Ta alloying and multilayer architecture. Surface and Coatings Technology, 2017, 328, 428-435.	2.2	37
107	Hard and superhard TiAlBN coatings deposited by twin electron-beam evaporation. Surface and Coatings Technology, 2007, 201, 6078-6083.	2.2	36
108	Towards predictive modeling of near-edge structures in electron energy-loss spectra of AlN-based ternary alloys. Physical Review B, 2011, 83, .	1.1	36

#	Article	IF	CITATIONS
109	Designing thin film materials — Ternary borides from first principles. Thin Solid Films, 2015, 583, 46-49.	0.8	36
110	Insight into the structural evolution during TiN film growth via atomic resolution TEM. Journal of Alloys and Compounds, 2018, 754, 257-267.	2.8	36
111	Fracture properties of thin film TiN at elevated temperatures. Materials and Design, 2020, 194, 108885.	3.3	36
112	Non-reactively sputtered ultra-high temperature Hf-C and Ta-C coatings. Surface and Coatings Technology, 2017, 309, 436-444.	2.2	35
113	Fracture toughness trends of modulus-matched TiN/(Cr,Al)N thin film superlattices. Acta Materialia, 2021, 202, 376-386.	3.8	35
114	Stabilization criteria for cubic AlN in TiN/AlN and CrN/AlN bi-layer systems. Journal Physics D: Applied Physics, 2013, 46, 045305.	1.3	34
115	Macroscopic elastic properties of textured ZrN-AlN polycrystalline aggregates: From <i>ab initio</i> calculations to grain-scale interactions. Physical Review B, 2014, 90, .	1.1	34
116	Composition driven phase evolution and mechanical properties of Mo–Cr–N hard coatings. Journal of Applied Physics, 2015, 118, .	1.1	34
117	Cross-sectional structure-property relationship in a graded nanocrystalline Ti1â^'xAlxN thin film. Acta Materialia, 2016, 102, 212-219.	3.8	34
118	Influence of Mo on the structure and the tribomechanical properties of arc evaporated Ti-Al-N. Surface and Coatings Technology, 2017, 311, 330-336.	2.2	34
119	Ab initio-guided development of super-hard Mo–Al–Cr–N coatings. Scripta Materialia, 2017, 140, 27-30.	2.6	34
120	Hard and superhard nanocomposite Al–Cu–N films prepared by magnetron sputtering. Surface and Coatings Technology, 2001, 142-144, 603-609.	2.2	33
121	Comparative study of Ti1â^'xAlxN coatings alloyed with Hf, Nb, and B. Surface and Coatings Technology, 2005, 200, 113-117.	2.2	33
122	Phase equilibria, thermodynamics and microstructure simulation of metastable spinodal decomposition in c–Ti1â^'xAlxN coatings. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2017, 56, 92-101.	0.7	33
123	Protective Transition Metal Nitride Coatings. , 2014, , 355-388.		32
124	Thermal stability and mechanical properties of arc evaporated Ti–Al–Zr–N hard coatings. Surface and Coatings Technology, 2015, 266, 1-9.	2.2	32
125	Assessment of ductile character in superhard Ta-C-N thin films. Acta Materialia, 2019, 179, 17-25.	3.8	32
126	Synthesis–structure–property relations for Cr–B–N coatings sputter deposited reactively from a Cr–B target with 20at% B. Vacuum, 2008, 82, 771-776.	1.6	31

#	Article	IF	CITATIONS
127	Toughness of Si alloyed high-entropy nitride coatings. Materials Letters, 2019, 251, 238-240.	1.3	31
128	Crystallographic orientation dependent maximum layer thickness of cubic AlN in CrN/AlN multilayers. Acta Materialia, 2019, 168, 190-202.	3.8	31
129	Influence of Deposition Temperature on the Phase Evolution of HfNbTiVZr High-Entropy Thin Films. Materials, 2019, 12, 587.	1.3	31
130	Improving phase stability, hardness, and oxidation resistance of reactively magnetron sputtered (Al,Cr,Nb,Ta,Ti)N thin films by Si-alloying. Surface and Coatings Technology, 2021, 416, 127162.	2.2	31
131	Influence of Tantalum on phase stability and mechanical properties of WB2. MRS Communications, 2019, 9, 375-380.	0.8	31
132	Influence of AlN layers on mechanical properties and thermal stability of Cr-based nitride coatings. Thin Solid Films, 2013, 531, 113-118.	0.8	30
133	Guidelines for increasing the oxidation resistance of Ti-Al-N based coatings. Thin Solid Films, 2019, 688, 137290.	0.8	30
134	Cross-sectional X-ray nanobeam diffraction analysis of a compositionally graded CrNx thin film. Thin Solid Films, 2013, 542, 1-4.	0.8	29
135	Stability and elasticity of metastable solid solutions and superlattices in the MoN–TaN system: First-principles calculations. Materials and Design, 2018, 144, 310-322.	3.3	29
136	Deformation and Cracking Mechanism in CrN/TiN Multilayer Coatings. Coatings, 2019, 9, 363.	1.2	29
137	Correlating structural and mechanical properties of AlN/TiN superlattice films. Scripta Materialia, 2019, 165, 159-163.	2.6	29
138	Atomistic mechanisms underlying plasticity and crack growth in ceramics: a case study of AlN/TiN superlattices. Acta Materialia, 2022, 229, 117809.	3.8	29
139	Improved mechanical properties, thermal stabilities, and oxidation resistance of arc evaporated Ti-Al-N coatings through alloying with Ta. Surface and Coatings Technology, 2018, 344, 244-249.	2.2	28
140	Curvature-induced excess surface energy of fullerenes: Density functional theory and Monte Carlo simulations. Physical Review B, 2010, 81, .	1.1	27
141	Continuum modeling of van der Waals interactions between carbon onion layers. Carbon, 2011, 49, 1620-1627.	5.4	27
142	Tuning structure and mechanical properties of Ta-C coatings by N-alloying and vacancy population. Scientific Reports, 2018, 8, 17669.	1.6	27
143	Mechanistic study of superlattice-enabled high toughness and hardness in MoN/TaN coatings. Communications Materials, 2020, 1, .	2.9	27
144	Interfaces in nanostructured thin films and their influence on hardness. International Journal of Materials Research, 2005, 96, 468-480.	0.8	26

#	Article	IF	CITATIONS
145	On the influence of coating and oxidation on the mechanical properties of a Î ³ -TiAl based alloy. Intermetallics, 2008, 16, 1206-1211.	1.8	26
146	Influence of coating thickness and substrate on stresses and mechanical properties of (Ti,Al,Ta)N/(Al,Cr)N multilayers. Surface and Coatings Technology, 2018, 347, 92-98.	2.2	26
147	Surface chemical changes induced by low-energy ion bombardment in chromium nitride layers. Surface and Interface Analysis, 2002, 34, 740-743.	0.8	25
148	Structural properties of wurtzitelike ScGaN films grown by NH3-molecular beam epitaxy. Journal of Applied Physics, 2009, 106, 113533.	1.1	25
149	Thermal expansion of rock-salt cubic AlN. Applied Physics Letters, 2015, 107, .	1.5	25
150	Corundum-type Fe-doped cathodic arc evaporated Al–Cr–O coatings. Scripta Materialia, 2015, 97, 49-52.	2.6	25
151	Influence of carbon deficiency on phase formation and thermal stability of super-hard TaCy thin films. Scripta Materialia, 2018, 149, 150-154.	2.6	25
152	Annealing effect on the fracture toughness of CrN/TiN superlattices. International Journal of Refractory Metals and Hard Materials, 2018, 71, 352-356.	1.7	25
153	Mechanical properties and epitaxial growth of TiN/AlN superlattices. Surface and Coatings Technology, 2019, 375, 1-7.	2.2	25
154	How to get noWear? – A new take on the design of in-situ formed high performing low-friction tribofilms. Materials and Design, 2020, 190, 108519.	3.3	25
155	A model for evolution of shape changing precipitates in multicomponent systems. Acta Materialia, 2008, 56, 4896-4904.	3.8	24
156	Influence of bipolar pulsed DC magnetron sputtering on elemental composition and micro-structure of Ti–Al–Y–N thin films. Surface and Coatings Technology, 2008, 203, 148-155.	2.2	24
157	Role of droplets and iron on the phase formation of arc evaporated Al–Cr-oxide coatings. Surface and Coatings Technology, 2015, 276, 735-742.	2.2	24
158	Complementary ab initio and X-ray nanodiffraction studies of Ta2O5. Acta Materialia, 2015, 83, 276-284.	3.8	24
159	Reactive HiPIMS deposition of Ti-Al-N: Influence of the deposition parameters on the cubic to hexagonal phase transition. Surface and Coatings Technology, 2020, 382, 125007.	2.2	24
160	Thermal stability of CrN/AlN superlattice coatings. Surface and Coatings Technology, 2014, 240, 250-254.	2.2	23
161	The effect of interlayer composition and thickness on the stabilization of cubic AlN in AlN/Ti–Al–N superlattices. Thin Solid Films, 2014, 565, 94-100.	0.8	23
162	Structural and mechanical properties of nitrogen-deficient cubic Cr–Mo–N and Cr–W–N systems. Scripta Materialia, 2016, 123, 34-37.	2.6	23

#	Article	IF	CITATIONS
163	Correlating elemental distribution with mechanical properties of TiN/SiNx nanocomposite coatings. Scripta Materialia, 2019, 170, 20-23.	2.6	23
164	Influence of different atmospheres on the thermal decomposition of Al-Cr-N coatings. Journal Physics D: Applied Physics, 2008, 41, 155316.	1.3	22
165	Influence of Si on the target oxide poisoning during reactive arc evaporation of (Al,Cr)2O3 coatings. Vacuum, 2014, 100, 29-32.	1.6	22
166	Ti-Al-N/Mo-Si-B multilayers: An architectural arrangement for high temperature oxidation resistant hard coatings. Surface and Coatings Technology, 2017, 328, 80-88.	2.2	22
167	Composition, microstructure and mechanical properties of boron containing multilayer coatings for hot forming tools. Surface and Coatings Technology, 2011, 205, S24-S28.	2.2	21
168	Diffusion behavior of C, Cr, and Fe in arc evaporated TiN- and CrN-based coatings and their influence on thermal stability and hardness. Surface and Coatings Technology, 2015, 275, 185-192.	2.2	21
169	Influence of oxygen impurities on growth morphology, structure and mechanical properties of Ti–Al–N thin films. Thin Solid Films, 2016, 603, 39-49.	0.8	21
170	Tribological Properties of Nanocomposite CrC x /a-C:H Thin Films. Tribology Letters, 2007, 27, 97-104.	1.2	20
171	Controlling microstructure, preferred orientation, and mechanical properties of Cr-Al-N by bombardment and alloying with Ta. Journal of Applied Physics, 2016, 119, .	1.1	20
172	Impact of bias potential and layer arrangement on thermal stability of arc evaporated Al-Cr-N coatings. Thin Solid Films, 2016, 610, 26-34.	0.8	20
173	Thermally-induced phase transformation sequence of arc evaporated Ta–Al–N coatings. Scripta Materialia, 2016, 113, 75-78.	2.6	20
174	Structure, phase evolution, and mechanical properties of DC, pulsed DC, and high power impulse magnetron sputtered Ta–N films. Surface and Coatings Technology, 2018, 347, 304-312.	2.2	20
175	Thermally stable superhard diborides: An ab initio guided case study for V-W-diboride thin films. Acta Materialia, 2020, 186, 487-493.	3.8	20
176	Thermal stability and mechanical properties of boron enhanced Mo–Si coatings. Surface and Coatings Technology, 2015, 280, 282-290.	2.2	19
177	Arc evaporated W-alloyed Ti-Al-N coatings for improved thermal stability, mechanical, and tribological properties. Surface and Coatings Technology, 2017, 332, 275-282.	2.2	19
178	Dislocation densities and alternating strain fields in CrN/AlN nanolayers. Thin Solid Films, 2017, 638, 189-200.	0.8	19
179	Interfaces in arc evaporated Al-Cr-N/Al-Cr-O multilayers and their impact on hardness. Surface and Coatings Technology, 2017, 324, 236-242.	2.2	19
180	High-throughput first-principles search for ceramic superlattices with improved ductility and fracture resistance. Acta Materialia, 2021, 206, 116615.	3.8	19

#	Article	IF	CITATIONS
181	Atomic insights on intermixing of nanoscale nitride multilayer triggered by nanoindentation. Acta Materialia, 2021, 214, 117004.	3.8	19
182	Strain-stabilized Al-containing high-entropy sublattice nitrides. Acta Materialia, 2022, 224, 117483.	3.8	19
183	Cross-sectional X-ray nano-diffraction and -reflectivity analysis of multilayered AlTiN–TiSiN thin films: Correlation between residual strain and bi-layer period. Scripta Materialia, 2015, 107, 153-156.	2.6	18
184	First principles studies on the impact of point defects on the phase stability of (AlxCr1â^'x)2O3 solid solutions. AIP Advances, 2016, 6, .	0.6	18
185	Effect of Mo on the thermal stability, oxidation resistance, and tribo-mechanical properties of arc evaporated Ti-Al-N coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	0.9	18
186	Mechanical properties and oxidation resistance of Al-Cr-N/Ti-Al-Ta-N multilayer coatings. Surface and Coatings Technology, 2018, 347, 427-433.	2.2	18
187	Influence of Ta on the oxidation resistance of WB2â^'z coatings. Journal of Alloys and Compounds, 2021, 864, 158121.	2.8	18
188	Correlating point defects with mechanical properties in nanocrystalline TiN thin films. Materials and Design, 2021, 207, 109844.	3.3	18
189	Thermal stability and age hardening of supersaturated AlCrN hard coatings. International Heat Treatment and Surface Engineering, 2007, 1, 75-79.	0.2	17
190	Influence of Fe impurities on structure and properties of arc-evaporated AlCrN coatings. Surface and Coatings Technology, 2013, 215, 96-103.	2.2	17
191	Reactive in-situ formation and self-assembly of MoS2 nanoflakes in carbon tribofilms for low friction. Materials and Design, 2021, 199, 109427.	3.3	17
192	Sputter-deposited Al–Au coatings. Intermetallics, 2004, 12, 579-587.	1.8	16
193	Oxidation behavior of arc evaporated Al-Cr-Si-N thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	16
194	Effect of wavelength modulation of arc evaporated Ti–Al–N/Ti–Al–V–N multilayer coatings on microstructure and mechanical/tribological properties. Thin Solid Films, 2015, 581, 20-24.	0.8	16
195	Influence of substrate bias on structure and mechanical properties of arc evaporated (Al,Cr) 2 O 3 and (Al,Cr,Fe) 2 O 3 coatings. Surface and Coatings Technology, 2017, 319, 386-393.	2.2	16
196	Cerium doping of Ti-Al-N coatings for excellent thermal stability and oxidation resistance. Surface and Coatings Technology, 2017, 326, 165-172.	2.2	16
197	Structure, mechanical properties, and thermal stability of arc evaporated (Al1-xCrx)2O3 coatings. Surface and Coatings Technology, 2018, 342, 37-47.	2.2	16
198	Thermal stability and mechanical properties of Ti-Al-B-N thin films. International Journal of Refractory Metals and Hard Materials, 2018, 71, 320-324.	1.7	16

#	Article	IF	CITATIONS
199	Magnetic field strength influence on the reactive magnetron sputter deposition of Ta ₂ O ₅ . Journal Physics D: Applied Physics, 2013, 46, 335203.	1.3	15
200	High-rate deposition of AlTiN and related coatings with dense morphology by central cylindrical direct current magnetron sputtering. Thin Solid Films, 2014, 556, 361-368.	0.8	15
201	Vacancy-driven extended stability of cubic metastable Ta-Al-N and Nb-Al-N phases. Surface and Coatings Technology, 2017, 326, 37-44.	2.2	15
202	Influence of phase transformation on the damage tolerance of Ti-Al-N coatings. Vacuum, 2018, 155, 153-157.	1.6	15
203	Electron-configuration stabilized (W,Al)B2 solid solutions. Acta Materialia, 2019, 174, 398-405.	3.8	15
204	Epitaxial growth of Al–Cr–N thin films on MgO(111). Thin Solid Films, 2008, 517, 598-602.	0.8	14
205	Oxidation behavior and tribological properties of multilayered Ti-Al-N/Mo-Si-B thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	14
206	Microstructural modifications in powder-metallurgically produced Al0.675Cr0.275Fe0.05 targets during cathodic arc evaporation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	14
207	Atomistic Modelingâ€Based Design of Novel Materials. Advanced Engineering Materials, 2017, 19, 1600688.	1.6	14
208	Ab initio supported development of TiN/MoN superlattice thin films with improved hardness and toughness. Acta Materialia, 2022, 231, 117871.	3.8	14
209	Thermal annealing of sputtered Al–Si–Cu–N films. Vacuum, 2003, 72, 21-28.	1.6	13
210	Superlattice-induced oscillations of interplanar distances and strain effects in the CrN/AlN system. Physical Review B, 2017, 95, .	1.1	13
211	Selective phase formation in substoichiometric Al-Cr-based oxides. Scripta Materialia, 2017, 139, 144-147.	2.6	13
212	Deformation behaviour of TiN and Ti–Al–N coatings at 295 to 573â€⁻K. Thin Solid Films, 2019, 688, 137363.	0.8	13
213	Enhanced fracture toughness in ceramic superlattice thin films: On the role of coherency stresses and misfit dislocations. Materials and Design, 2021, 202, 109517.	3.3	13
214	Phase formation and mechanical properties of reactively and non-reactively sputtered Ti-B-N hard coatings. Surface and Coatings Technology, 2021, 420, 127327.	2.2	13
215	Effect of Si-addition on structure and thermal stability of Ti-Al-N coatings. Journal of Alloys and Compounds, 2022, 917, 165483.	2.8	13
216	High Temperature Oxidation Resistance of CrAlYN-Coated Ti45Al8Nb. Oxidation of Metals, 2011, 75, 359-376.	1.0	12

#	Article	IF	CITATIONS
217	Development of a multi-variate calibration approach for quantitative analysis of oxidation resistant Mo–Si–B coatings using laser ablation inductively coupled plasma mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 120, 57-62.	1.5	12
218	Impact of sputter deposition parameters on the microstructural and piezoelectric properties of CrxAl1â ^{^2} xN thin films. Thin Solid Films, 2018, 648, 76-82.	0.8	12
219	Adhesive wear formation on PVD coated tools applied in hot forming of Al-Si coated steel sheets. Wear, 2019, 430-431, 309-316.	1.5	12
220	Hard Ti–Al–N endowed with high heat-resistance through alloying with Ta and Ce. Surface and Coatings Technology, 2019, 372, 26-33.	2.2	12
221	Low Friction CrNMPP/TiNDCMS Multilayer Coatings. Tribology Letters, 2012, 46, 87-93.	1.2	11
222	Atomic scale investigations of thermally treated nano-structured Ti-Al-N/Mo-Si-B multilayers. Surface and Coatings Technology, 2018, 349, 480-487.	2.2	11
223	Point-defect engineering of MoN/TaN superlattice films: A first-principles and experimental study. Materials and Design, 2020, 186, 108211.	3.3	11
224	Synthesis and electrochemical properties of nanoporous CrN thin film electrodes for supercapacitor applications. Materials and Design, 2021, 209, 109949.	3.3	11
225	Annealing studies and oxidation tests of a hybrid multilayer arrangement of cathodic arc evaporated Ti–Al–N and reactively sputtered Ta–Al–N coatings. Surface and Coatings Technology, 2015, 283, 89-95.	2.2	10
226	On the phase evolution of arc evaporated Al-Cr-based intermetallics and oxides. Thin Solid Films, 2017, 644, 120-128.	0.8	10
227	Thermal stability of arc evaporated Al-Cr-O and Al-Cr-O/Al-Cr-N multilayer coatings. Surface and Coatings Technology, 2018, 352, 213-221.	2.2	10
228	Microstructure of Al-containing magnetron sputtered TiB2 thin films. Thin Solid Films, 2019, 688, 137361.	0.8	10
229	On the oxidation behaviour of cathodic arc evaporated Al Cr and Al Cr O coatings. Vacuum, 2019, 163, 1-9.	1.6	10
230	Microstructure and mechanical properties of sputtered intermetallic Al–Au coatings. Journal of Applied Physics, 2007, 102, 023523.	1.1	9
231	Thermal stability of sputtered intermetallic Al–Au coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1402-1406.	0.9	9
232	Single-crystal growth of NaCl-structure Al–Cr–N thin films on MgO(001) by magnetron sputter epitaxy. Scripta Materialia, 2007, 57, 1089-1092.	2.6	9
233	Interfacial coherency stress distribution in TiN/AlN bilayer and multilayer films studied by FEM analysis. Computational Materials Science, 2012, 55, 211-216.	1.4	9
234	<i>In situ</i> transmission electron microscopy studies of the kinetics of Pt-Mo alloy diffusion in ZrB2 thin films. Applied Physics Letters, 2013, 103, .	1.5	9

#	Article	IF	CITATIONS
235	Kinetics of Ga droplet decay on thin carbon films. Applied Physics Letters, 2013, 102, .	1.5	9
236	Interface controlled microstructure evolution in nanolayered thin films. Scripta Materialia, 2016, 123, 13-16.	2.6	9
237	Thermal stability of arc evaporated Al-Cr-O-N coatings. Surface and Coatings Technology, 2018, 356, 64-71.	2.2	9
238	Nano-structural investigation of Ti-Al-N/Mo-Si-B multilayer coatings: A comparative study by APT and HR-TEM. Vacuum, 2018, 157, 173-179.	1.6	9
239	The impact of Ni and Mo on growth-morphology and mechanical properties of arc evaporated Ti-Cr-N hard coatings. Surface and Coatings Technology, 2019, 377, 124917.	2.2	9
240	Strain and stress analyses on thermally annealed Ti-Al-N/Mo-Si-B multilayer coatings by synchrotron X-ray diffraction. Surface and Coatings Technology, 2019, 361, 364-370.	2.2	9
241	Impact of lanthanum and boron on the growth, thermomechanical properties and oxidation resistance of Ti–Al–N thin films. Thin Solid Films, 2019, 688, 137239.	0.8	9
242	Experimental Chemistry and Structural Stability of AlNb3 Enabled by Antisite Defects Formation. Materials, 2019, 12, 1104.	1.3	8
243	In-situ XRD studies of arc evaporated Al-Cr-O coatings during oxidation. Surface and Coatings Technology, 2019, 358, 934-941.	2.2	8
244	Growth-twins in CrN/AlN multilayers induced by hetero-phase interfaces. Acta Materialia, 2020, 185, 157-170.	3.8	8
245	The MoN–TaN system: Role of vacancies in phase stability and mechanical properties. Materials and Design, 2021, 202, 109568.	3.3	8
246	Impact of oxygen content on the thermal stability of Ti-Al-O-N coatings based on computational and experimental studies. Acta Materialia, 2022, 227, 117706.	3.8	8
247	Heavy-element-alloying for toughness enhancement of hard nitrides on the example Ti-W-N. Acta Materialia, 2022, 231, 117897.	3.8	8
248	Thermal Stability and Self-Arrangement of Nanocrystalline Hard Coatings. , 2004, , 57-68.		7
249	Impact of morphology and phase composition on mechanical properties of α-structured (Cr,Al)2O3/(Al,Cr,X)2O3 multilayers. Scripta Materialia, 2018, 146, 208-212.	2.6	7
250	Impact of Si and B on the phase stability of cathodic arc evaporated Al0.70Cr0.30-based oxides. Scripta Materialia, 2018, 152, 107-111.	2.6	7
251	Indentation response of a superlattice thin film revealed by in-situ scanning X-ray nanodiffraction. Acta Materialia, 2020, 195, 425-432.	3.8	7
252	Wear in hard metal check valves: In-situ surface modification through tribolayer formation in dry contact. Vacuum, 2021, 192, 110482.	1.6	7

#	Article	IF	CITATIONS
253	TGO formation and oxygen diffusion in Al-rich gamma-TiAl PVD-coatings on TNM alloys. Scripta Materialia, 2022, 210, 114455.	2.6	7
254	Crossover of texture and morphology in (Ti1â^'xAlx)1â^'yYyN alloy films and the pathway of structure evolution. Surface and Coatings Technology, 2014, 257, 3-14.	2.2	6
255	Triggering the Phase Evolution Within (Al,Cr)2O3-based Coatings by Alloying and Microstructural Concepts. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2016, 161, 325-329.	0.4	6
256	Oxygen dependent morphology and mechanical properties of Al Cr (Fe)-based coatings. Surface and Coatings Technology, 2018, 349, 103-110.	2.2	6
257	Laser based analysis of transition metal boride thin films using liquid standards. Microchemical Journal, 2020, 152, 104449.	2.3	6
258	Mapping the mechanical properties in nitride coatings at the nanometer scale. Acta Materialia, 2020, 194, 343-353.	3.8	6
259	Atomic-scale understanding of the structural evolution of TiN/AlN superlattice during nanoindentation— Part 1: Deformation. Acta Materialia, 2022, 234, 118008.	3.8	6
260	Structure Models of Massively Transformed High Niobium Containing TiAl Alloys. Materials Research Society Symposia Proceedings, 2006, 980, 1.	0.1	5
261	Oxidation behavior of intermetallic Al-Cr and Al-Cr-Fe macroparticles. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 061601.	0.9	5
262	Microstructure and phase evolution of gradually-structured arc evaporated Al0.25Cr0.75-based oxide coatings. Vacuum, 2018, 155, 645-649.	1.6	5
263	On the phase formation of cathodic arc evaporated Al1â^'xCrx-based intermetallic coatings and substoichiometric oxides. Surface and Coatings Technology, 2018, 352, 392-398.	2.2	5
264	The influence of synthetic air flow on the properties of arc evaporated Al-Cr-O-N coatings. Thin Solid Films, 2019, 688, 137252.	0.8	5
265	Processing Fiberâ€Reinforced Polymers: Specific Wear Phenomena Caused by Filler Materials. Polymer Engineering and Science, 2020, 60, 78-85.	1.5	5
266	How microalloying of the Al target can improve process and film characteristics of sputtered alumina. Surface and Coatings Technology, 2020, 393, 125762.	2.2	5
267	Ultra-high oxidation resistance of nano-structured thin films. Materials and Design, 2021, 201, 109499.	3.3	5
268	Reactive HiPIMS deposition of Al-oxide thin films using W-alloyed Al targets. Surface and Coatings Technology, 2021, 422, 127467.	2.2	5
269	Time-averaged and time-resolved ion fluxes related to reactive HiPIMS deposition of Ti-Al-N films. Surface and Coatings Technology, 2021, 424, 127638.	2.2	5
270	Mechanical properties of CrN-based superlattices: Impact of magnetism. Acta Materialia, 2021, 218, 117095.	3.8	5

#	Article	IF	CITATIONS
271	Some Materials Science Aspects of PVD Hard Coatings. , 2001, , 263-274.		5
272	Ab initio studies on the adsorption and implantation of Al and Fe to nitride materials. Journal of Applied Physics, 2015, 118, 125306.	1.1	4
273	Progress in the synthesis of Al- and Cr-based sesquioxide coatings for protective applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	4
274	Structure and mechanical properties of architecturally designed Ti-Al-N and Ti-Al-Ta-N-based multilayers. Surface and Coatings Technology, 2020, 385, 125355.	2.2	4
275	Tuning of structure, grain orientation and mechanical properties in reactively sputtered (Al,Mo,Ta,V,W)N. Materials and Design, 2022, 213, 110346.	3.3	4
276	High-entropy alloy inspired development of compositionally complex superhard (Hf,Ta,Ti,V,Zr)-B-N coatings. Materials and Design, 2022, 218, 110695.	3.3	4
277	Self-hardening of Nanocrystalline Ti-B-N Thin Films. Microscopy and Microanalysis, 2006, 12, 720-721.	0.2	3
278	Oxidation Resistance and Ductility of a Coated Î ³ -TiAl Based Alloy. BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik, 2008, 153, 268-272.	0.4	3
279	First Principles Study of Water-Based Self-Assembled Nanobearing Effect in CrN/TiN Multilayer Coatings. Solid State Phenomena, 0, 258, 373-378.	0.3	3
280	Thermomechanical properties and oxidation resistance of Ce–Si alloyed Ti–Al–N thin films. Vacuum, 2019, 166, 231-238.	1.6	3
281	Thermal stability and oxidation resistance of architecturally designed Ti–Al–N- and Ti–Al–Ta–N-based multilayers. Surface and Coatings Technology, 2020, 385, 125444.	2.2	3
282	Atomic-scale understanding of the structural evolution in TiN/AlN superlattice during nanoindentation—Part 2: Strengthening. Acta Materialia, 2022, 234, 118009.	3.8	3
283	On the oxidation behavior of cathodic arc evaporated Al-Cr-Fe and Al-Cr-Fe-O coatings. I. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 041503.	0.9	2
284	On the oxidation behavior of cathodic arc evaporated Al-Cr-Fe and Al-Cr-Fe-O coatings. II. Transmission electron microscopy investigations of Al0.675Cr0.275Fe0.05-based films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 041504.	0.9	2
285	Thermal Stability and Mechanical Properties of Sputtered (Hf,Ta,V,W,Zr)-Diborides. SSRN Electronic Journal, 0, , .	0.4	2
286	Magnetron sputtered NiAl/TiBx multilayer thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	2
287	Influence of experimental constraints on micromechanical assessment of micromachined hard-tissue samples. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 106, 103741.	1.5	1
288	Evaluation of Wear Measurement with Radioactive Isotopes for DLC Coatings Affected by Abrasive Particles. Tribology Letters, 2022, 70, .	1.2	1

#	Article	IF	CITATIONS
289	Sputtered Coatings Based on the Al2Au Phase. Materials Research Society Symposia Proceedings, 2004, 842, 333.	0.1	0
290	Thermal Stability of Nanostructured TiN-TiB2 Thin Films. Materials Research Society Symposia Proceedings, 2004, 854, U6.2.1.	0.1	0
291	Magnetron Sputtered Intermetallic Al2Au and Al-Zr-Y Coatings for the Oxidation Protection of γ-TiAl. Materials Research Society Symposia Proceedings, 2006, 980, 8.	0.1	Ο
292	2008 ICMCTF preface. Thin Solid Films, 2008, 517, 1009-1010.	0.8	0
293	2009 ICMCTF. Thin Solid Films, 2009, 518, 1363-1364.	0.8	Ο
294	Editorial: Special Issues on the 19th Plansee Seminar 2017. International Journal of Refractory Metals and Hard Materials, 2018, 76, 57.	1.7	0
295	Toughness Enhancement in TiN/WN Superlattice Thin Films. SSRN Electronic Journal, 0, , .	0.4	0
296	Innovative Coatings for Tooling, Machining, Aerospace, Energy and Automotive Industry. , 0, , .		0