
Anna Zelenaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/111460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computer model of a T-x-y diagram for a ternary system with monotectic monovariant equilibrium. Russian Journal of Inorganic Chemistry, 2008, 53, 794-799.	1.3	10
2	Specific features of the crystallization of melts in systems with a transition from syntectic equilibrium. Crystallography Reports, 2009, 54, 1300-1307.	0.6	10
3	Phase trajectories in CaO-Al2O3-SiO2 melts. Crystallography Reports, 2012, 57, 943-947.	0.6	8
4	High-Temperature Area of the Fe-Ni-Co-Cu Phase Diagram: Experimental Study and Computer Design. Journal of Phase Equilibria and Diffusion, 2021, 42, 175-193.	1.4	8
5	T–x–y Diagram of the MgO–SiO2–Al2O3 System: Computer Model Assembly. Russian Journal of Inorganic Chemistry, 2018, 63, 966-973.	1.3	7
6	T–x–y Diagram of MgO–SiO2–Al2O3 System: Microstructure Design. Russian Journal of Inorganic Chemistry, 2018, 63, 1087-1091.	1.3	6
7	Melt solidification in the ceramic system CaO-Al2O3-SiO2. IOP Conference Series: Materials Science and Engineering, 2011, 18, 112005.	0.6	5
8	Reference Book on the Oxide Systems Space Diagrams as a Tool for Data Mining. Solid State Phenomena, 2015, 230, 51-54.	0.3	5
9	Using a 3D Computer Model of the T–x–y Diagram of the ZrO2–SiO2–Al2O3 System to Resolve Contradictions in the Initial Experimental Data. Russian Journal of Inorganic Chemistry, 2021, 66, 894-901.	1.3	5
10	Improvement of the method to search low-melting solvents for the crystals MBaNa(BO3)2 (MÂ=ÂSc,Y) growth. Solid State Sciences, 2012, 14, 1604-1608.	3.2	4
11	Crystallization Paths and Microstructures in Ternary Oxide Systems with Stoichiometric Compounds. Solid State Phenomena, 0, 200, 73-78.	0.3	4
12	Crystallization paths in SiO2-Al2O3-CaO system as a genotype of silicate materials. ÉpÃŧÅ'anyag: Journal of Silicate Based and Composite Materials, 2013, 65, 34-38.	0.2	3
13	Phase equilibria in the NaF-LiF-LaF3 system. Russian Journal of Inorganic Chemistry, 2014, 59, 600-605.	1.3	3
14	3D Computer Model of the Ni–Cu–NiS–Cu2S Subsystem T–x–y Diagram above 575°C. Russian Journa Physical Chemistry A, 2019, 93, 2593-2599.	al of 0.6	3
15	Prediction of the Liquidus of the Quaternary System of Titanium, Aluminum, Silicon, and Zirconium Oxides. Glass Physics and Chemistry, 2021, 47, 616-621.	0.7	2
16	Computer Model for T-x-y Diagram with a Binary Compound Decomposed at High Temperatures. ECS Transactions, 2010, 25, 31-41.	0.5	1
17	Precision of the eutectic points determination by the isopleths. IOP Conference Series: Materials Science and Engineering, 2011, 18, 162021.	0.6	1
18	Search for low-temperature solvents using nonplanar tie-lines. Crystallography Reports, 2012, 57, 984-987.	0.6	1

Anna Zelenaya

#	Article	IF	CITATIONS
19	Li,Na,Rb,La F System for Molten Salt Reactor: 3D and 4D Computer Models. Advanced Materials Research, 0, 704, 349-352.	0.3	1
20	Crystallization paths in SiO2-Al2O3-CaO system as a genotype of silicate materials. IOP Conference Series: Materials Science and Engineering, 2013, 47, 012047.	0.6	1
21	4D space models of quaternary systems for the phase diagrams graphics correction. IOP Conference Series: Materials Science and Engineering, 2016, 123, 012036.	0.6	1
22	Solidification Paths within the Ceramic Systems. Advanced Materials Research, 0, 704, 173-178.	0.3	0
23	A 3D computer model of the CaO-MgO-Al2O3 T-x-y diagram at temperatures above 1300 °C. Kondensirovannye Sredy Mezhfaznye Granitsy, 2021, 23, 380-386.	0.3	0