
Dante Ferreira Franceschini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1114554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	sp-hybridized carbon atoms formed by low-energy collisions in carbon nanofoams produced by pulsed laser deposition. Materials Letters, 2022, 314, 131886.	1.3	1
2	Manganese oxide nanofoam prepared by pulsed laser deposition for high performance supercapacitor electrodes. Materials Chemistry and Physics, 2020, 242, 122459.	2.0	17
3	Comparison of the properties of a-C:H films deposited from methane and heptane precursors: study of the mechanical, chemical and structural properties. Thin Solid Films, 2020, 695, 137733.	0.8	4
4	Nickel nanoparticles supported by commercial carbon paper as a catalyst for urea electro-oxidation. Materials for Renewable and Sustainable Energy, 2020, 9, 1.	1.5	7
5	Tuning the morphology of manganese oxide nanostructures for obtaining both high gravimetric and volumetric capacitance. Materials Advances, 2020, 1, 2433-2442.	2.6	27
6	Superconductivity in Bi/Ni bilayer system: Clear role of superconducting phases found at Bi/Ni interface. Physical Review Materials, 2018, 2, .	0.9	14
7	Effects of postdeposition heat treatment on the structural and magnetic properties of CoFe2O4 nanoparticles produced by pulsed laser deposition. Journal of Applied Physics, 2017, 122, .	1.1	17
8	Biogenic approaches using citrus extracts for the synthesis of metal nanoparticles: the role of flavonoids in gold reduction and stabilization. New Journal of Chemistry, 2016, 40, 1420-1429.	1.4	24
9	Polyaniline nanofibers–graphene oxide nanoplatelets composite thin film electrodes for electrochemical capacitors. RSC Advances, 2014, 4, 34168-34178.	1.7	33
10	Cobalt Catalyst Characterization for Methane Decomposition and Carbon Nanotube Growth. Journal of the Brazilian Chemical Society, 2014, , .	0.6	3
11	Support effect on carbon nanotube growth by methane chemical vapor deposition on cobalt catalysts. Journal of the Brazilian Chemical Society, 2012, 23, 868-879.	0.6	18
12	Er:SrF2 luminescent powders prepared by combustion synthesis. Materials Chemistry and Physics, 2012, 135, 317-321.	2.0	21
13	Nanostructured europium oxide thin films deposited by pulsed laser ablation of a metallic target in a He buffer atmosphere. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 1092-1098.	0.9	5
14	Deposition of hard amorphous hydrogenated carbon films by radiofrequency parallel-plate hollow-cathode plasmas. Diamond and Related Materials, 2007, 16, 616-622.	1.8	12
15	Structural and optical characterization of fluorinated hydrogenated silicon carbide films deposited by pulsed glow discharge. Surface and Coatings Technology, 2006, 200, 6079-6082.	2.2	2
16	Growth, Structure, and Properties of Plasma-Deposited Amorphous Hydrogenated Carbon–Nitrogen Films. Thin Films and Nanostructures, 2002, , 217-276.	0.1	2
17	Nanoporosity in plasma deposited amorphous carbon films investigated by small-angle X-ray scattering. Diamond and Related Materials, 2002, 11, 1946-1951.	1.8	11
18	Growth, structure, and properties of plasma-deposited amorphous hydrogenated Carbon-Nitrogen		1

films. , 2002, , 649-676.

#	Article	IF	CITATIONS
19	Film growth and relationship between microstructure and mechanical properties of a-C:H:F films deposited by PECVD. Diamond and Related Materials, 2001, 10, 125-131.	1.8	49
20	Fluorine incorporation into amorphous hydrogenated carbon films deposited by plasma-enhanced chemical vapor deposition: structural modifications investigated by X-ray photoelectron spectrometry and Raman spectroscopy. Diamond and Related Materials, 2001, 10, 910-914.	1.8	22
21	Surface modifications in diamond-like carbon films submitted to low-energy nitrogen ion bombardment. Nuclear Instruments & Methods in Physics Research B, 2001, 175-177, 699-704.	0.6	4
22	Plasma-deposited a-C(N): H films. Brazilian Journal of Physics, 2000, 30, 517-526.	0.7	11
23	Amorphous carbon films deposited by direct current-magnetron sputtering: Void distribution investigated by gas effusion and small angle x-ray scattering experiments. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2344.	0.9	6
24	Statistical models for carbon-nitrogen film growth. Physical Review E, 2000, 61, 3417-3425.	0.8	12
25	Structural and mechanical characterization of fluorinated amorphous-carbon films deposited by plasma decomposition of CF[sub 4]–CH[sub 4] gas mixtures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2230.	0.9	77
26	Two species model for deposition and erosion of carbon-nitrogen films. Applied Physics Letters, 1999, 74, 209-211.	1.5	17
27	Growth kinetics and relationship between structure and mechanical properties of a-C(N):H films deposited in acetylene–nitrogen atmospheres. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 545-551.	0.9	32
28	Voids Investigation of Amorphous Carbon Films Deposited by DC-Magnetron Sputtering: A Small Angle x-ray Scattering and Gas Thermal Effusion Study. Materials Research Society Symposia Proceedings, 1999, 593, 383.	0.1	0
29	Study of nitrogen implanted amorphous hydrogenated carbon thin films by variable-energy positron annihilation spectroscopy. Journal of Applied Physics, 1997, 81, 2451-2453.	1.1	7
30	Carbon nitride thin films prepared by reactive sputtering: Elemental composition and structural characterization. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 1970-1975.	0.9	35
31	Hard a-C(N):H films obtained from plasma decomposition of methylamine-containing mixtures. Diamond and Related Materials, 1997, 6, 631-634.	1.8	22
32	Structure and properties of a-C:H films deposited onto polymeric substrates. Diamond and Related Materials, 1997, 6, 551-554.	1.8	18
33	Nitrogen modification of hydrogenated amorphous carbon films. Journal of Applied Physics, 1997, 81, 2626-2634.	1.1	333
34	Structure and mechanical properties of hard amorphous carbon-nitrogen films obtained by plasma decomposition of methane-ammonia mixtures. Thin Solid Films, 1997, 293, 236-243.	0.8	75
35	Hard amorphous hydrogenated carbon-nitrogen films obtained by PECVD in methane-ammonia atmospheres. Diamond and Related Materials, 1996, 5, 471-474.	1.8	39
36	Influence of precursor gases on the structure of plasma deposited amorphous hydrogenated carbon–nitrogen films. Applied Physics Letters, 1996, 68, 2645-2647.	1.5	45

#	Article	IF	CITATIONS
37	Nitrogenated amorphous carbon as a semiconductor. Diamond and Related Materials, 1996, 5, 401-404.	1.8	50
38	Atomic force microscopy of amorphous hydrogenated carbon–nitrogen films deposited by radioâ€frequencyâ€plasma decomposition of methane–ammonia gas mixtures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 2351-2355.	0.9	56
39	Structural Disorder in Hard Amorphous Carbon Films Implanted with Nitrogen Ions. Materials Research Society Symposia Proceedings, 1995, 396, 227.	0.1	2
40	Nitrogen Incorporation into Hard Amorphous Carbon Films Obtained by RF Plasma Decomposition of CH ₄ â€N ₂ Gas Mixtures. Physica Status Solidi (B): Basic Research, 1995, 192, 493-502.	0.7	13
41	Amorphous hydrogenated carbon nitride films obtained by plasma-enhanced chemical vapour deposition. Surface and Coatings Technology, 1995, 74-75, 382-386.	2.2	24
42	In-depth modifications of implanted amorphous carbon films. Applied Physics A: Solids and Surfaces, 1994, 59, 667-672.	1.4	8
43	RBS, ERDA and NR analyses of hard amorphous nitrogen-incorporated carbon films. Nuclear Instruments & Methods in Physics Research B, 1994, 85, 268-271.	0.6	27
44	Structural modifications in a-C:H films doped and implanted with nitrogen. Diamond and Related Materials, 1994, 3, 88-93.	1.8	36
45	Characterization of hard amorphous carbon films implanted with nitrogen ions. Nuclear Instruments & Methods in Physics Research B, 1993, 80-81, 1464-1467.	0.6	14
46	Internal stress reduction by nitrogen incorporation in hard amorphous carbon thin films. Applied Physics Letters, 1992, 60, 3229-3231.	1.5	218
47	Magnetic and electrical properties of iron-rich Ce(Fe1-xAlx)2 intermetallics: some remarks. Journal of Magnetism and Magnetic Materials, 1986, 62, 47-52.	1.0	8
48	Magnetic properties of Ce(Fe1-xAlx)2 for x⩽0.20. Journal of Magnetism and Magnetic Materials, 1985, 51, 280-290.	1.0	67
49	Magnetic behaviour of the intermetallic compound Ce(Fe0.8Al0.2)2. Journal of Physics F: Metal Physics, 1982, 12, 3083-3088.	1.6	10