Oleg Janson

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1114536/oleg-janson-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

56	1,168	21	32
papers	citations	h-index	g-index
60	1,416	4.3 avg, IF	4.28
ext. papers	ext. citations		L-index

#	Paper	IF	Citations
56	Phase Diagram of Nickelate Superconductors Calculated by Dynamical Vertex Approximation. <i>Frontiers in Physics</i> , 2022 , 9,	3.9	4
55	Different types of spin currents in the comprehensive materials database of nonmagnetic spin Hall effect. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	1
54	How correlations change the magnetic structure factor of the kagome Hubbard model. <i>Physical Review B</i> , 2021 , 104,	3.3	2
53	Operation Mechanism in Hybrid Mg-Li Batteries with TiNbO Allowing Stable High-Rate Cycling. <i>ACS Applied Materials & Applied &</i>	9.5	10
52	Ab initio based ligand field approach to determine electronic multiplet properties. <i>Physical Review B</i> , 2021 , 104,	3.3	1
51	Frustration enhanced by Kitaev exchange in a j eff=12 triangular antiferromagnet. <i>Physical Review B</i> , 2021 , 104,	3.3	2
50	Nickelate superconductors renaissance of the one-band Hubbard model. <i>Npj Quantum Materials</i> , 2020 , 5,	5	52
49	Ground state and low-temperature magnetism of the quasi-two-dimensional honeycomb compound InCu2/3V1/3O3. <i>Physical Review B</i> , 2019 , 100,	3.3	1
48	Magnetoelastic couplings in the deformed kagome quantum spin lattice of volborthite. <i>Physical Review B</i> , 2019 , 99,	3.3	3
47	Electronic and magnetic state of LaMnO3 epitaxially strained on SrTiO3: Effect of local correlation and nonlocal exchange. <i>Physical Review B</i> , 2019 , 100,	3.3	6
46	Dynamical Mean Field Theory for Oxide Heterostructures. Springer Series in Materials Science, 2018, 21.	5-2.43	
45	Finite-temperature phase diagram of (111) nickelate bilayers. <i>Physical Review B</i> , 2018 , 98,	3.3	5
44	Frustrated spin chain physics near the Majumdar-Ghosh point in szenicsite Cu3(MoO4)(OH)4. <i>Physical Review B</i> , 2017 , 95,	3.3	12
43	Anisotropic field-induced gap in the quasi-one-dimensional antiferromagnet KCuMoO4(OH). <i>Physical Review B</i> , 2017 , 96,	3.3	5
42	Quantum Anomalous Hall State in Ferromagnetic SrRuO_{3} (111) Bilayers. <i>Physical Review Letters</i> , 2017 , 119, 026402	7.4	43
41	Magnetic Behavior of Volborthite Cu_{3}V_{2}O_{7}(OH)_{2}\DH_{2}O Determined by Coupled Trimers Rather than Frustrated Chains. <i>Physical Review Letters</i> , 2016 , 117, 037206	7.4	31
40	Interplay of magnetic sublattices in langite Cu4(OH)6SO4[2H2O. <i>New Journal of Physics</i> , 2016 , 18, 0330	0 20 9	4

39	Magnetic anisotropy in the frustrated spin-chain compound TeVO4. Physical Review B, 2016, 94,	3.3	18
38	Intermetallic germanides with non-centrosymmetric structures derived from the Yb3Rh4Sn13 type. <i>Dalton Transactions</i> , 2015 , 44, 5638-51	4.3	13
37	Consequences of critical interchain couplings and anisotropy on a Haldane chain. <i>Physical Review B</i> , 2015 , 91,	3.3	14
36	The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3. <i>Nature Communications</i> , 2014 , 5, 5376	17.4	79
35	CoBi3the first binary compound of cobalt with bismuth: high-pressure synthesis and superconductivity. <i>Journal of Physics Condensed Matter</i> , 2014 , 26, 395701	1.8	14
34	Microscopic magnetic modeling for the S=12 alternating-chain compounds Na3Cu2SbO6 and Na2Cu2TeO6. <i>Physical Review B</i> , 2014 , 89,	3.3	22
33	Magnetic pyroxenes LiCrGe2O6 and LiCrSi2O6: Dimensionality crossover in a nonfrustrated S=32 Heisenberg model. <i>Physical Review B</i> , 2014 , 90,	3.3	11
32	Nearly compensated exchange in the dimer compound callaghanite Cu2Mg2(CO3)(oH)6[2H2O. <i>Physical Review B</i> , 2014 , 89,	3.3	13
31	Crystal structures and variable magnetism of PbCu2(XO3)2Cl2 with X = Se, Te. <i>Dalton Transactions</i> , 2013 , 42, 9547-54	4.3	31
30	Structure and magnetism of Cr2[BP3O12]: Towards the quantum-classical crossover in a spin-32 alternating chain. <i>Physical Review B</i> , 2013 , 87,	3.3	11
29	CoBi3: a binary cobalt-bismuth compound and superconductor. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 9853-7	16.4	33
28	Spin gap in malachite Cu2(OH)2CO3 and its evolution under pressure. <i>Physical Review B</i> , 2013 , 88,	3.3	34
27	Magnetism of CuX2 frustrated chains (X = F, Cl, Br): Role of covalency. <i>Physical Review B</i> , 2013 , 87,	3.3	18
26	Square-lattice magnetism of diaboleite Pb2Cu(OH)4Cl2. <i>Physical Review B</i> , 2013 , 87,	3.3	20
25	Magnetization and spin dynamics of the spin S=12 hourglass nanomagnet Cu5(OH)2(NIPA)4[10H2O. <i>Physical Review B</i> , 2013 , 87,	3.3	15
24	Electronic structure of KTi(SO4)2[H2O: An S=12 frustrated chain antiferromagnet. <i>Physical Review B</i> , 2013 , 88,	3.3	3
23	Two energy scales of spin dimers in clinoclase Cu3(AsO4)(OH)3. <i>Physical Review B</i> , 2013 , 87,	3.3	15
22	Decorated Shastry-Sutherland lattice in the spin-12 magnet CdCu2(BO3)2. <i>Physical Review B</i> , 2012 , 85,	3.3	20

21	Short-range order of Br and three-dimensional magnetism in (CuBr)LaNb2O7. <i>Physical Review B</i> , 2012 , 85,	3.3	7
20	Magnetic properties of the low-dimensional spin-12 magnet ECu2As2O7. <i>Physical Review B</i> , 2011 , 84,	3.3	21
19	Magnetic model for A2CuP2O7 (A=Na, Li): One-dimensional versus two-dimensional behavior. <i>Physical Review B</i> , 2011 , 84,	3.3	21
18	CaCu2(SeO3)2Cl2: Spin-12 Heisenberg chain compound with complex frustrated interchain couplings. <i>Physical Review B</i> , 2011 , 83,	3.3	11
17	Long-range superexchange in Cu2A2O7 (A= P, As, V) as a key element of the microscopic magnetic model. <i>Physical Review B</i> , 2011 , 83,	3.3	30
16	Multistep approach to microscopic models for frustrated quantum magnets: the case of the natural mineral azurite. <i>Physical Review Letters</i> , 2011 , 106, 217201	7.4	95
15	Unusual ferromagnetic superexchange in CdVO3: The role of Cd. <i>Physical Review B</i> , 2011 , 84,	3.3	18
14	J1🏿 Heisenberg model at and close to its z=4 quantum critical point. <i>Physical Review B</i> , 2011 , 84,	3.3	25
13	Electronic structure and magnetic properties of the spin-gap compound Cu2(PO3)2CH2: Magnetic versus structural dimers. <i>Physical Review B</i> , 2010 , 81,	3.3	11
12	Coupled frustrated quantum spin-12 chains with orbital order in volborthite Cu3V2O7(OH)2?2H2O. <i>Physical Review B</i> , 2010 , 82,	3.3	35
11	Antiferromagnetic spin-12 chains in (NO)Cu(NO3)3: A microscopic study. <i>Physical Review B</i> , 2010 , 82,	3.3	14
10	ECu2V2O7: A spin-12 honeycomb lattice system. <i>Physical Review B</i> , 2010 , 82,	3.3	74
9	Large quantum fluctuations in the strongly coupled spin-12 chains of green dioptase Cu6Si6O18?6H2O. <i>Physical Review B</i> , 2010 , 82,	3.3	27
8	Bridging frustrated-spin-chain and spin-ladder physics: Quasi-one-dimensional magnetism of BiCu2PO6. <i>Physical Review B</i> , 2010 , 82,	3.3	47
7	Crystal-water-induced switching of magnetically active orbitals in CuCl2. <i>Physical Review B</i> , 2009 , 79,	3.3	22
6	Electronic structure and magnetic properties of the spin-1/2 Heisenberg system CuSe2O5. <i>New Journal of Physics</i> , 2009 , 11, 113034	2.9	34
5	Intrinsic peculiarities of real material realizations of a spin-1/2 kagom[lattice. <i>Journal of Physics: Conference Series</i> , 2009 , 145, 012008	0.3	9
4	Modified kagome physics in the natural spin-1/2 kagome lattice systems: kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2. <i>Physical Review Letters</i> , 2008 , 101, 106403	7.4	63

LIST OF PUBLICATIONS

3	Cull materials From crystal chemistry to magnetic model compounds. <i>Science and Technology of Advanced Materials</i> , 2007 , 8, 352-356	7.1	5
2	Electronic structure and magnetic properties of Bi2CuO4. <i>Physica C: Superconductivity and Its Applications</i> , 2007 , 460-462, 458-459	1.3	8
1	Electronic structure and magnetic properties of the spin-1½ Heisenberg magnet Bi2CuO4. <i>Physical Review B</i> , 2007 , 76,	3.3	25