Peter Stiling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11144902/publications.pdf Version: 2024-02-01

DETED STILING

#	Article	lF	CITATIONS
1	Gopher tortoise herbivory increases plant species richness and diversity. Plant Ecology, 2019, 220, 383-391.	1.6	10
2	Gopher Tortoise (Gopherus polyphemus) Gut Passage Can Alter Seed Germinability. American Midland Naturalist, 2019, 182, 181.	0.4	2
3	Indirect competitive effects of stemborers on a gall community. Entomologia Experimentalis Et Applicata, 2015, 154, 23-27.	1.4	4
4	Release from herbivory does not confer invasion success for Eugenia uniflora in Florida. Oecologia, 2014, 174, 817-826.	2.0	5
5	Effects of large-scale host plant addition and removal on parasitoid-mediated associational resistance in the gall midgeAsphondylia borrichiae. Ecological Entomology, 2013, 38, 531-534.	2.2	0
6	Fire, hurricane and carbon dioxide: effects on net primary production of a subtropical woodland. New Phytologist, 2013, 200, 767-777.	7.3	8
7	Seedlings of the introduced invasive shrub Eugenia uniflora (Myrtaceae) outperform those of its native and introduced non-invasive congeners in Florida. Biological Invasions, 2013, 15, 1973-1987.	2.4	12
8	Effects of Relative Host Plant Abundance, Density and Inter-Patch Distance on Associational Resistance to a Coastal Gall-Making Midge, <i>Asphondylia borrichiae</i> (Diptera: Cecidomyiidae). Florida Entomologist, 2013, 96, 1143-1148.	0.5	3
9	Direct and legacy effects of longâ€ŧerm elevated <scp>CO</scp> ₂ on fine root growth and plant–insect interactions. New Phytologist, 2013, 200, 788-795.	7.3	20
10	Effects of Cactoblastis cactorum on the survival and growth of North American Opuntia. Biological Invasions, 2012, 14, 2355-2367.	2.4	20
11	Lack of Associational Effects between Two Hosts of an Invasive Herbivore: <i>Opuntia</i> Spp. and <i>Cactoblastis cactorum</i> (Lepidoptera: Pyralidae). Florida Entomologist, 2012, 95, 1048-1057.	0.5	3
12	Selecting for Tolerance against Pathogens and Herbivores to Enhance Success of Reintroduction and Translocation. Conservation Biology, 2012, 26, 586-592.	4.7	32
13	Herbivory by an introduced Asian weevil negatively affects population growth of an invasive Brazilian shrub in Florida. Ecology, 2012, 93, 1902-1911.	3.2	18
14	Ant predation on an invasive herbivore: can an extrafloral nectar-producing plant provide associational resistance to Opuntia individuals?. Biological Invasions, 2011, 13, 2261-2273.	2.4	15
15	Similar responses of insect herbivores to leaf fluctuating asymmetry. Arthropod-Plant Interactions, 2011, 5, 59-69.	1.1	30
16	Longâ€term exposure to elevated CO ₂ in a Florida scrubâ€oak forest increases herbivore densities but has no effect on other arthropod guilds. Insect Conservation and Diversity, 2010, 3, 152-156.	3.0	10
17	Death and Decline of a Rare Cactus in Florida. Castanea, 2010, 75, 190-197.	0.1	7
18	Small Variations over Large Scales: Fluctuating Asymmetry over the Range of Two Oak Species. International Journal of Plant Sciences, 2010, 171, 303-309.	1.3	14

Peter Stiling

#	Article	IF	CITATIONS
19	Greenhouse Gases, Global Warming, and Insects. , 2009, , 428-431.		2
20	Effects of aphid-tending Argentine ants, nitrogen enrichment and early-season herbivory on insects hosted by a coastal shrub. Biological Invasions, 2009, 11, 183-191.	2.4	6
21	Comparing the effects of the exotic cactus-feeding moth, Cactoblastis cactorum (Berg) (Lepidoptera:) Tj ETQq1 on two species of Florida Opuntia. Biological Invasions, 2009, 11, 619-624.	1 0.7843 2.4	14 rgBT /Ove 17
22	Seeing the forest for the trees: longâ€ŧerm exposure to elevated CO ₂ increases some herbivore densities. Global Change Biology, 2009, 15, 1895-1902.	9.5	24
23	Spatial, bottomâ€up, and topâ€down effects on the abundance of a leaf miner. Ecography, 2009, 32, 459-467.	4.5	18
24	Clumped distribution of oak leaf miners between and within plants. Basic and Applied Ecology, 2008, 9, 67-77.	2.7	35
25	How does elevated carbon dioxide (CO ₂) affect plant–herbivore interactions? A field experiment and metaâ€analysis of CO ₂ â€mediated changes on plant chemistry and herbivore performance. Global Change Biology, 2007, 13, 1823-1842.	9.5	358
26	Relationships among Key deer, insect herbivores, and plant quality. Ecological Research, 2007, 22, 268-273.	1.5	16
27	Does enemy release matter for invasive plants? evidence from a comparison of insect herbivore damage among invasive, non-invasive and native congeners. Biological Invasions, 2007, 9, 773-781.	2.4	56
28	Does low nutritional quality act as a plant defence? An experimental test of the slow-growth, high-mortality hypothesis. Ecological Entomology, 2006, 31, 32-40.	2.2	47
29	Effects of Key deer herbivory on forest communities in the lower Florida Keys. Biological Conservation, 2006, 129, 100-108.	4.1	27
30	Elevated CO2 increases the long-term decomposition rate of Quercus myrtifolia leaf litter. Global Change Biology, 2006, 12, 568-577.	9.5	18
31	Testing the enemy release hypothesis: a review and meta-analysis. Biological Invasions, 2006, 8, 1535-1545.	2.4	475
32	Non-random distribution among a guild of parasitoids: implications for community structure and host survival. Ecological Entomology, 2006, 31, 557-563.	2.2	14
33	Key Deer Impacts on Hardwood Hammocks Near Urban Areas. Journal of Wildlife Management, 2006, 70, 1574-1579.	1.8	7
34	Responses of different herbivore guilds to nutrient addition and natural enemy exclusion. Ecoscience, 2006, 13, 66-74.	1.4	28
35	INSECT HERBIVORE FAUNAL DIVERSITY AMONG INVASIVE, NON-INVASIVE AND NATIVE EUGENIA SPECIES: IMPLICATIONS FOR THE ENEMY RELEASE HYPOTHESIS. Florida Entomologist, 2006, 89, 475-484.	0.5	14
36	BOTTOM-UP AND TOP-DOWN EFFECTS ON INSECT HERBIVORES DO NOT VARY AMONG SITES OF DIFFERENT SALINITY. Ecology, 2006, 87, 2673-2679.	3.2	10

PETER STILING

#	Article	IF	CITATIONS
37	Trade-off in oviposition strategy: choosing poor quality host plants reduces mortality from natural enemies for a salt marsh planthopper. Ecological Entomology, 2006, 31, 236-241.	2.2	25
38	NITROGEN CYCLING DURING SEVEN YEARS OF ATMOSPHERIC CO2ENRICHMENT IN A SCRUB OAK WOODLAND. Ecology, 2006, 87, 26-40.	3.2	77
39	ARE TROPHODYNAMIC MODELS WORTH THEIR SALT? TOP-DOWN AND BOTTOM-UP EFFECTS ALONG A SALINITY GRADIENT. Ecology, 2005, 86, 1730-1736.	3.2	13
40	Effects of nutrients and parasitism on the density of a salt marsh planthopper suppressed by within-trophic-level interactions. Ecological Entomology, 2005, 30, 642-649.	2.2	8
41	Perfect is best: low leaf fluctuating asymmetry reduces herbivory by leaf miners. Oecologia, 2005, 142, 46-56.	2.0	60
42	Quality or quantity: the direct and indirect effects of host plants on herbivores and their natural enemies. Oecologia, 2005, 142, 413-420.	2.0	122
43	Effects of elevated CO2 on foliar quality and herbivore damage in a scrub oak ecosystem. Journal of Chemical Ecology, 2005, 31, 267-286.	1.8	38
44	Effects of Elevated CO2 and Herbivore Damage on Litter Quality in a Scrub Oak Ecosystem. Journal of Chemical Ecology, 2005, 31, 2343-2356.	1.8	19
45	What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biological Control, 2005, 34, 236-246.	3.0	238
46	Tritrophic interactions and trade-offs in herbivore fecundity on hybridising host plants. Ecological Entomology, 2004, 29, 255-263.	2.2	8
47	Elevated CO2 decreases leaf fluctuating asymmetry and herbivory by leaf miners on two oak species. Global Change Biology, 2004, 10, 27-36.	9.5	33
48	Differential effects of elevated CO2 on acorn density, weight, germination, and predation among three oak species in a scrub-oak forest. Global Change Biology, 2004, 10, 228-232.	9.5	20
49	The Double-Edged Sword of Biological Control in Conservation and Restoration. Conservation Biology, 2004, 18, 50-53.	4.7	86
50	Endangered Cactus Restoration: Mitigating the Non-Target Effects of a Biological Control Agent (Cactoblastis cactorum) in Florida. Restoration Ecology, 2004, 12, 605-610.	2.9	30
51	Biological Control not on Target. Biological Invasions, 2004, 6, 151-159.	2.4	36
52	Induced Defensive Response of Myrtle Oak to Foliar Insect Herbivory in Ambient and Elevated Co2. Journal of Chemical Ecology, 2004, 30, 1143-1152.	1.8	36
53	THE INFLUENCE OF A SALINITY AND NUTRIENT GRADIENT ON COASTAL VS. UPLAND TRITROPHIC COMPLEXES. Ecology, 2004, 85, 2709-2716.	3.2	36
54	Elevated CO 2 lowers relative and absolute herbivore density across all species of a scrub-oak forest. Oecologia, 2003, 134, 82-87.	2.0	72

PETER STILING

#	Article	IF	CITATIONS
55	The influence of legacy effects and recovery from perturbations in a tritrophic salt marsh complex. Ecological Entomology, 2003, 28, 457-466.	2.2	8
56	Associational resistance mediated by natural enemies. Ecological Entomology, 2003, 28, 587-592.	2.2	40
57	THE EFFECTS OF SALINITY AND NUTRIENTS ON A TRITROPHIC SALT-MARSH SYSTEM. Ecology, 2002, 83, 2465-2476.	3.2	48
58	The influence of species identity and herbivore feeding mode on top-down and bottom-up effects in a salt marsh system. Oecologia, 2002, 133, 243-253.	2.0	29
59	Top-down, bottom-up, or side to side? Within-trophic-level interactions modify trophic dynamics of a salt marsh herbivore. Oikos, 2002, 98, 480-490.	2.7	35
60	Elevated atmospheric CO2 lowers herbivore abundance, but increases leaf abscission rates. Global Change Biology, 2002, 8, 658-667.	9.5	76
61	Seasonal variability in the effect of elevated CO2on ecosystem leaf area index in a scrub-oak ecosystem. Global Change Biology, 2002, 8, 931-940.	9.5	24
62	Title is missing!. Biological Invasions, 2002, 4, 273-281.	2.4	40
63	DIRECT AND INDIRECT EFFECTS OF PLANT CLONE AND LOCAL ENVIRONMENT ON HERBIVORE ABUNDANCE. Ecology, 2000, 81, 281-285.	3.2	17
64	RELATIVE IMPORTANCE OF ABIOTICALLY INDUCED DIRECT AND INDIRECT EFFECTS ON A SALT-MARSH HERBIVORE. Ecology, 2000, 81, 470-481.	3.2	49
65	The effects of abiotically induced changes in host plant quality (and morphology) on a salt marsh planthopper and its parasitoid. Ecological Entomology, 2000, 25, 325-331.	2.2	40
66	The difficulties of single factor thinking in restoration. Biological Conservation, 2000, 94, 327-333.	4.1	19
67	The Frequency and Strength of Nontarget Effects of Invertebrate Biological Control Agents of Plant Pests and Weeds. , 2000, , 31-43.		49
68	SPATIOTEMPORAL VARIATION IN LEAFMINER POPULATION STRUCTURE AND ADAPTATION TO INDIVIDUAL OAK TREES. Ecology, 2000, 81, 1577-1587.	3.2	71
69	Spatiotemporal Variation in Leafminer Population Structure and Adaptation to Individual Oak Trees. Ecology, 2000, 81, 1577.	3.2	12
70	Relative Importance of Abiotically Induced Direct and Indirect Effects on a Salt-Marsh Herbivore. Ecology, 2000, 81, 470.	3.2	2
71	Decreased Leaf-Miner Abundance in Elevated CO 2 : Reduced Leaf Quality and Increased Parasitoid Attack. , 1999, 9, 240.		5
72	DECREASED LEAF-MINER ABUNDANCE IN ELEVATED CO2: REDUCED LEAF QUALITY AND INCREASED PARASITOID ATTACK. , 1999, 9, 240-244.		31

PETER STILING

#	Article	IF	CITATIONS
73	Experimental tests of trophic dynamics: taking a closer look. Oecologia, 1999, 119, 275-280.	2.0	12
74	Evidence for hostâ€associated races in a gallâ€forming midge: tradeâ€offs in potential fecundity. Ecological Entomology, 1999, 24, 95-102.	2.2	36
75	Weak Competition between Coastal Insect Herbivores. Florida Entomologist, 1999, 82, 599.	0.5	11
76	The influence of salt and nitrogen on herbivore abundance: direct and indirect effects. Oecologia, 1998, 113, 400-405.	2.0	57
77	Deme Formation in a Dispersive Gall-Forming Midge. , 1998, , 22-36.		22
78	HOW RISKY IS BIOLOGICAL CONTROL? REPLY. Ecology, 1998, 79, 1834-1836.	3.2	19
79	Exploitative Competition Strongly Affects the Herbivorous Insect Community on Baccharis halimifolia. Oikos, 1997, 79, 521.	2.7	18
80	EXPERIMENTAL MANIPULATIONS OF TOP-DOWN AND BOTTOM-UP FACTORS IN A TRI-TROPHIC SYSTEM. Ecology, 1997, 78, 1602-1606.	3.2	101
81	Experimental Manipulations of Top-Down and Bottom-Up Factors in a Tri-Trophic System. Ecology, 1997, 78, 1602.	3.2	6
82	Risks of species introduced for biological control. Biological Conservation, 1996, 78, 185-192.	4.1	243
83	Non-additive effects of multiple natural enemies on aphid populations. Oecologia, 1996, 108, 375-379.	2.0	167
84	How Risky is Biological Control?. Ecology, 1996, 77, 1965-1974.	3.2	579
85	Complex Effects of Genotype and Environment on Insect Herbivores and Their Enemies. Ecology, 1996, 77, 2212-2218.	3.2	73
86	Coastal insect herbivore communities are affected more by local environmental conditions than by plant genotype. Ecological Entomology, 1995, 20, 184-190.	2.2	27
87	LOCAL ADAPTATION AND AGENTS OF SELECTION IN A MOBILE INSECT. Evolution; International Journal of Organic Evolution, 1995, 49, 810-815.	2.3	119
88	Intraspecific Variation in Growth Rate, Size, and Parasitism of Galls Induced by Asphondylia borrichiae (Diptera: Cecidomyiidae) on Three Host Species. Annals of the Entomological Society of America, 1995, 88, 39-44.	2.5	25
89	Local Adaptation and Agents of Selection in a Mobile Insect. Evolution; International Journal of Organic Evolution, 1995, 49, 810.	2.3	61
90	Coastal insect herbivore populations are strongly influenced by environmental variation. Ecological Entomology, 1994, 19, 39-44.	2.2	24

Peter Stiling

#	Article	IF	CITATIONS
91	Why Do Natural Enemies Fail in Classical Biological Control Programs?. American Entomologist, 1993, 39, 31-37.	0.2	181
92	Life History and Parasites of Asphondylia borrichiae (Diptera: Cecidomyiidae), a Gall Maker on Borrichia frutescens. Florida Entomologist, 1992, 75, 130.	0.5	31
93	Biology of and Rates of Parasitism by Nymphal and Adult Parasites of the Salt-Marsh-Inhabiting Planthoppers Prokelisia marginata and P. dolus. Florida Entomologist, 1991, 74, 81.	0.5	14
94	Does Spatial Scale Affect the Incidence of Density Dependence? A Field Test with Insect Parasitoids. Ecology, 1991, 72, 2143-2154.	3.2	42
95	Variation in rates of leaf abscission between plants may affect the distribution patterns of sessile insects. Oecologia, 1991, 88, 367-370.	2.0	42
96	Calculating the Establishment Rates of Parasitoids in Classical Biological Control. American Entomologist, 1990, 36, 225-230.	0.2	101
97	Leaf Abscission: Induced Defense against Pests or Response to Damage?. Oikos, 1989, 55, 43.	2.7	54
98	Larval Dispersion and Survivorship in a Leaf-Mining Moth. Ecology, 1987, 68, 1647-1657.	3.2	64