Pearu Peterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1114475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 2020, 17, 261-272.	9.0	17,539
2	Array programming with NumPy. Nature, 2020, 585, 357-362.	13.7	10,143
3	F2PY: a tool for connecting Fortran and Python programs. International Journal of Computational Science and Engineering, 2009, 4, 296.	0.4	186
4	Application of regularized Richardson-Lucy algorithm for deconvolution of confocal microscopy images. Journal of Microscopy, 2011, 243, 124-140.	0.8	75
5	Analysis of Molecular Movement Reveals Latticelike Obstructions to Diffusion in Heart Muscle Cells. Biophysical Journal, 2012, 102, 739-748.	0.2	31
6	Restricted ADP movement in cardiomyocytes: Cytosolic diffusion obstacles are complemented with a small number of open mitochondrial voltage-dependent anion channels. Journal of Molecular and Cellular Cardiology, 2016, 97, 197-203.	0.9	30
7	Long-time behaviour of soliton ensembles. Part I––Emergence of ensembles. Chaos, Solitons and Fractals, 2002, 14, 1413-1424.	2.5	29
8	Tight Coupling of Na+/K+-ATPase with Glycolysis Demonstrated in Permeabilized Rat Cardiomyocytes. PLoS ONE, 2014, 9, e99413.	1.1	29
9	On the long-time behaviour of soliton ensembles. Mathematics and Computers in Simulation, 2003, 62, 137-147.	2.4	24
10	Long-time behaviour of soliton ensembles. Part II––Periodical patterns of trajectories. Chaos, Solitons and Fractals, 2003, 15, 29-40.	2.5	23
11	Real-time determination of sarcomere length of a single cardiomyocyte during contraction. American Journal of Physiology - Cell Physiology, 2013, 304, C519-C531.	2.1	22
12	A direct and inverse problem for wave crests modelled by interactions of two solitons. Physica D: Nonlinear Phenomena, 2000, 141, 316-332.	1.3	21
13	Molecular Dynamics Simulations of Creatine Kinase and Adenine Nucleotide Translocase in Mitochondrial Membrane Patch. Journal of Biological Chemistry, 2012, 287, 7467-7476.	1.6	20
14	Sensitivity of the inverse wave crest problem. Wave Motion, 2001, 34, 391-399.	1.0	14
15	Bidirectionality and Compartmentation of Metabolic Fluxes Are Revealed in the Dynamics of Isotopomer Networks. International Journal of Molecular Sciences, 2009, 10, 1697-1718.	1.8	12
16	Reconstruction of multi-soliton interactions using crest data for (2+1)-dimensional KdV type equations. Physica D: Nonlinear Phenomena, 2002, 171, 221-235.	1.3	5
17	Symbolic flux analysis for genome-scale metabolic networks. BMC Systems Biology, 2011, 5, 81.	3.0	3
18	Cross-Bridge Group Ensembles Describing Cooperativity in Thermodynamically Consistent Way. PLoS ONE, 2015, 10, e0137438.	1.1	3

#	Article	IF	CITATIONS
19	Mapping Diffusion Coefficients of Fluorescent Dyes in Cardiomyocytes. Biophysical Journal, 2011, 100, 470a.	0.2	0
20	Sensitivity Analysis of Flux Determination in Heart by H218O -provided Labeling Using a Dynamic Isotopologue Model of Energy Transfer Pathways. PLoS Computational Biology, 2012, 8, e1002795.	1.5	0
21	Incorporating Cooperativity into Huxley-Type Cross-Bridge Models in Thermodynamically Consistent Way. Biophysical Journal, 2012, 102, 357a.	0.2	0