Robert M French

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11143881/publications.pdf

Version: 2024-02-01

41 papers

1,766 citations

394421 19 h-index 35 g-index

44 all docs

44 docs citations

44 times ranked 1180 citing authors

#	Article	IF	CITATIONS
1	Five Ways in Which Computational Modeling Can Help Advance Cognitive Science: Lessons From Artificial Grammar Learning. Topics in Cognitive Science, 2020, 12, 925-941.	1.9	7
2	Four Problems with Extracting Human Semantics from Large Text Corpora., 2019,, 316-321.		4
3	Across space and time: infants learn from backward and forward visual statistics. Developmental Science, 2017, 20, e12474.	2.4	22
4	TRACX2: a connectionist autoencoder using graded chunks to model infant visual statistical learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160057.	4.0	35
5	Children's Failure in Analogical Reasoning Tasks: A Problem of Focus of Attention and Information Integration?. Frontiers in Psychology, 2017, 8, 707.	2.1	22
6	Analogical reasoning, control and executive functions: A developmental investigation with eye-tracking. Cognitive Development, 2016, 38, 10-26.	1.3	60
7	Interactive Effects of Explicit Emergent Structure: A Major Challenge for Cognitive Computational Modeling. Topics in Cognitive Science, 2015, 7, 206-216.	1.9	3
8	Moving beyond the Turing test. Communications of the ACM, 2012, 55, 74-77.	4.5	23
9	Dusting Off the Turing Test. Science, 2012, 336, 164-165.	12.6	16
10	Computational Modeling in Cognitive Science: A Manifesto for Change. Topics in Cognitive Science, 2012, 4, 332-341.	1.9	19
11	Noise and the Emergence of Rules in Category Learning: A Connectionist Model. IEEE Transactions on Autonomous Mental Development, 2011, 3, 194-206.	1.6	3
12	TRACX: A recognition-based connectionist framework for sequence segmentation and chunk extraction Psychological Review, 2011, 118, 614-636.	3.8	118
13	The Application of Machine Learning Algorithms to the Analysis of Electromyographic Patterns From Arthritic Patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18, 174-184.	4.9	55
14	Relational priming is to analogy-making as one-ball juggling is to seven-ball juggling. Behavioral and Brain Sciences, 2008, 31, 386-387.	0.7	10
15	A NEURAL NETWORK INVESTIGATION OF THE HEAD PREFERENCE: PROBLEMS EXPLAINING EMPIRICAL RESULTS BY BOTTOM-UP PROCESSES ALONE. , 2005, , .		1
16	Self-refreshing memory in artificial neural networks: learning temporal sequences without catastrophic forgetting. Connection Science, 2004, 16, 71-99.	3.0	34
17	Understanding bilingual memory: models and data. Trends in Cognitive Sciences, 2004, 8, 87-93.	7.8	118
18	The Role of Bottom-Up Processing in Perceptual Categorization by 3- to 4-Month-Old Infants: Simulations and Data Journal of Experimental Psychology: General, 2004, 133, 382-397.	2.1	116

#	Article	IF	CITATIONS
19	The BIA++: Extending the BIA+ to a dynamical distributed connectionist framework. Bilingualism, 2002, 5, 202-205.	1.3	28
20	Using Noise to Compute Error Surfaces in Connectionist Networks: A Novel Means of Reducing Catastrophic Forgetting. Neural Computation, 2002, 14, 1755-1769.	2.2	27
21	The computational modeling of analogy-making. Trends in Cognitive Sciences, 2002, 6, 200-205.	7.8	94
22	<i>Natura non facit saltum</i> : The need for the full continuum of mental representations. Behavioral and Brain Sciences, 2002, 25, 339-340.	0.7	0
23	Asymmetric interference in 3- to 4-month-olds' sequential category learning. Cognitive Science, 2002, 26, 377-389.	1.7	40
24	Asymmetric interference in 3- to 4-month-olds' sequential category learning. Cognitive Science, 2002, 26, 377-389.	1.7	13
25	USING AUTOENCODERS TO MODEL ASYMMETRIC CATEGORY LEARNING IN EARLY INFANCY: INSIGHTS FROM PRINCIPAL COMPONENTS ANALYSIS. , 2002, , .		0
26	The Dynamical Hypothesis in Cognitive Science: A Review Essay of Mind As Motion. Minds and Machines, 2001, 11, 101-111.	4.8	5
27	Why co-occurrence information alone is not sufficient to answer subcognitive questions. Journal of Experimental and Theoretical Artificial Intelligence, 2001, 13, 421-429.	2.8	5
28	Pseudopatterns and dual-network memory models: Advantages and shortcomings. Perspectives in Neural Computing, 2001, , 13-22.	0.1	12
29	A Connectionist Model of Person Perception and Stereotype Formation. Perspectives in Neural Computing, 2001, , 209-218.	0.1	0
30	A connectionist account of asymmetric category learning in early infancy Developmental Psychology, 2000, 36, 635-645.	1.6	146
31	Why localist connectionist models are inadequate for categorization. Behavioral and Brain Sciences, 2000, 23, 477-477.	0.7	1
32	Peeking behind the screen: the unsuspected power of the standard Turing Test. Journal of Experimental and Theoretical Artificial Intelligence, 2000, 12, 331-340.	2.8	17
33	The Turing Test: the first 50 years. Trends in Cognitive Sciences, 2000, 4, 115-122.	7.8	131
34	When Coffee Cups Are Like Old Elephants, or Why Representation Modules Don't Make Sense. , 1999, , 93-100.		6
35	The dynamical hypothesis: One battle behind. Behavioral and Brain Sciences, 1998, 21, 640-641.	0.7	4
36	New-feature learning: How common is it?. Behavioral and Brain Sciences, 1998, 21, 26-26.	0.7	1

#	Article	IF	CITATIONS
37	Selective memory loss in aphasics: An insight from pseudo-recurrent connectionist networks. Perspectives in Neural Computing, 1998, , 183-195.	0.1	4
38	Pseudo-recurrent Connectionist Networks: An Approach to the 'Sensitivity-Stability' Dilemma. Connection Science, 1997, 9, 353-380.	3.0	119
39	High-level perception, representation, and analogy: A critique of artificial intelligence methodology. Journal of Experimental and Theoretical Artificial Intelligence, 1992, 4, 185-211.	2.8	224
40	Semi-distributed Representations and Catastrophic Forgetting in Connectionist Networks. Connection Science, 1992, 4, 365-377.	3.0	85
41	Subcognition and the Limits of the TuringTest. Mind, 1990, XCIX, 53-65.	0.6	127