
Tippi C Mackenzie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/111437/publications.pdf Version: 2024-02-01

TIDDI C MACKENZIE

#	Article	lF	CITATIONS
1	Exome sequencing of fetuses with congenital diaphragmatic hernia supports a causal role for NR2F2, PTPN11, and WT1 variants. American Journal of Surgery, 2022, 223, 182-186.	0.9	6
2	Fetal therapies and trials for lysosomal storage diseases: a survey of attitudes of parents and patients. Orphanet Journal of Rare Diseases, 2022, 17, 25.	1.2	7
3	Thymic and extrathymic <i>Aire</i> â€expressing cells in maternalâ€fetal tolerance. Immunological Reviews, 2022, , .	2.8	2
4	O27: MICROGLIAL CORRECTION AFTER FETAL THERAPY WITHOUT CONDITIONING IN MICE WITH MUCOPOLYSACCHARIDOSIS TYPE VII. British Journal of Surgery, 2021, 108, .	0.1	0
5	Extrathymic <i>Aire</i> -expressing cells support maternal-fetal tolerance. Science Immunology, 2021, 6, .	5.6	17
6	Forever Connected: The Lifelong Biological Consequences of Fetomaternal and Maternofetal Microchimerism. Clinical Chemistry, 2021, 67, 351-362.	1.5	29
7	Maternal and Infant Immune Repertoire Sequencing Analysis Identifies Distinct Ig and TCR Development in Term and Preterm Infants. Journal of Immunology, 2021, 207, ji2100566.	0.4	3
8	Consensus statement for the perinatal management of patients with $\hat{I}\pm$ thalassemia major. Blood Advances, 2021, 5, 5636-5639.	2.5	6
9	Advances in the management of α-thalassemia major: reasons to be optimistic. Hematology American Society of Hematology Education Program, 2021, 2021, 592-599.	0.9	20
10	Exome Sequencing for Prenatal Diagnosis in Nonimmune Hydrops Fetalis. New England Journal of Medicine, 2020, 383, 1746-1756.	13.9	114
11	Fetal and Maternal Safety Considerations for In Utero Therapy Clinical Trials: iFeTiS Consensus Statement. Molecular Therapy, 2020, 28, 2316-2319.	3.7	18
12	Tolerance induction and microglial engraftment after fetal therapy without conditioning in mice with mucopolysaccharidosis type VII. Science Translational Medicine, 2020, 12, .	5.8	24
13	Detection of microbial cell-free DNA in maternal and umbilical cord plasma in patients with chorioamnionitis using next generation sequencing. PLoS ONE, 2020, 15, e0231239.	1.1	13
14	In Utero Stem Cell Transplantation in Patients with Alpha Thalassemia Major: Interim Results of a Phase 1 Clinical Trial. Blood, 2020, 136, 1-1.	0.6	5
15	Investigating Zeta Globin Gene Expression to Develop a Potential Therapy for Alpha Thalassemia Major. Blood, 2020, 136, 3-4.	0.6	2
16	Fetal Treatment of Genetic Disorders. , 2019, , 175-185.		0
17	In Utero Gene Therapy Consensus Statement from the IFeTIS. Molecular Therapy, 2019, 27, 705-707.	3.7	32
18	Evaluation of Clinical Outcomes of Sutureless vs Sutured Closure Techniques in Gastroschisis Repair. JAMA Surgery, 2019, 154, 33.	2.2	28

TIPPI C MACKENZIE

#	Article	IF	CITATIONS
19	CD161 contributes to prenatal immune suppression of IFN-γ–producing PLZF+ T cells. Journal of Clinical Investigation, 2019, 129, 3562-3577.	3.9	55
20	Alloreactive fetal T cells promote uterine contractility in preterm labor via IFN-γ and TNF-α. Science Translational Medicine, 2018, 10, .	5.8	98
21	In Utero Hematopoietic Cell Transplantation: Past Clinical Experience and Future Clinical Trials. Current Stem Cell Reports, 2018, 4, 74-80.	0.7	5
22	Nonâ€Immune Hydrops Fetalis: Do Placentomegaly and Polyhydramnios Matter?. Journal of Ultrasound in Medicine, 2018, 37, 1185-1191.	0.8	9
23	Esophagoesophagopexy technique for assisted fistulization of esophageal atresia. Pediatric Surgery International, 2018, 34, 63-69.	0.6	6
24	Large Differences in Small RNA Composition Between Human Biofluids. Cell Reports, 2018, 25, 1346-1358.	2.9	163
25	Future AAVenues for In Utero Gene Therapy. Cell Stem Cell, 2018, 23, 320-321.	5.2	10
26	Meta-Analysis of Maternal and Fetal Transcriptomic Data Elucidates the Role of Adaptive and Innate Immunity in Preterm Birth. Frontiers in Immunology, 2018, 9, 993.	2.2	30
27	Fetal stem cell and gene therapy. Seminars in Fetal and Neonatal Medicine, 2017, 22, 410-414.	1.1	37
28	Epidemiology of Live Born Infants with Nonimmune Hydrops Fetalis—Insights from a Population-Based Dataset. Journal of Pediatrics, 2017, 187, 182-188.e3.	0.9	38
29	Heightened Immune Activation in Fetuses with Gastroschisis May Be Blocked by Targeting IL-5. Journal of Immunology, 2016, 196, 4957-4966.	0.4	16
30	Umbilical cord <scp>CD</scp> 71+ erythroid cells are reduced in neonates born to women in spontaneous preterm labor. American Journal of Reproductive Immunology, 2016, 76, 280-284.	1.2	28
31	A Transient Developmental Hematopoietic Stem Cell Gives Rise to Innate-like B and T Cells. Cell Stem Cell, 2016, 19, 768-783.	5.2	136
32	Favorable outcomes after <i>in utero</i> transfusion in fetuses with alpha thalassemia major: a case series and review of the literature. Prenatal Diagnosis, 2016, 36, 1242-1249.	1.1	39
33	Fetal Surgical conditions and the unraveling of maternal–fetal tolerance. Journal of Pediatric Surgery, 2016, 51, 197-199.	0.8	8
34	Maternal factors associated with the occurrence of gastroschisis. American Journal of Medical Genetics, Part A, 2015, 167, 1534-1541.	0.7	37
35	The many faces of hydrops. Journal of Pediatric Surgery, 2015, 50, 50-54.	0.8	48
36	Consensus statement from the first international conference for in utero stem cell transplantation and gene therapy. Frontiers in Pharmacology, 2015, 6, 15.	1.6	35

TIPPI C MACKENZIE

#	Article	IF	CITATIONS
37	Placental drug delivery for treatment of congenital hematopoietic disorders. Journal of Pediatric Surgery, 2015, 50, 1517-1520.	0.8	1
38	Increased maternal T cell microchimerism in the allogeneic fetus during LPS-induced preterm labor in mice. Chimerism, 2014, 5, 68-74.	0.7	18
39	Novel non-surgical prenatal approaches to treating congenital diaphragmatic hernia. Seminars in Fetal and Neonatal Medicine, 2014, 19, 349-356.	1.1	30
40	Fetal Intervention Increases Maternal T Cell Awareness of the Foreign Conceptus and Can Lead to Immune-Mediated Fetal Demise. Journal of Immunology, 2014, 192, 1938-1945.	0.4	38
41	Outcomes of fetal intervention for primary hydrothorax. Journal of Pediatric Surgery, 2014, 49, 900-904.	0.8	33
42	In utero depletion of fetal hematopoietic stem cells improves engraftment after neonatal transplantation in mice. Blood, 2014, 124, 973-980.	0.6	44
43	In utero hematopoietic cell transplantation for hemoglobinopathies. Frontiers in Pharmacology, 2014, 5, 278.	1.6	25
44	Fetal production of growth factors and inflammatory mediators predicts pulmonary hypertension in congenital diaphragmatic hernia. Pediatric Research, 2013, 74, 290-298.	1.1	43
45	Direct and indirect antigen presentation lead to deletion of donor-specific T cells after in utero hematopoietic cell transplantation in mice. Blood, 2013, 121, 4595-4602.	0.6	41
46	Alterations in maternal-fetal cellular trafficking after fetal surgery. Journal of Pediatric Surgery, 2012, 47, 1089-1094.	0.8	21
47	A Mouse Model of in Utero Transplantation. Journal of Visualized Experiments, 2011, , .	0.2	18
48	Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice. Journal of Clinical Investigation, 2011, 121, 582-592.	3.9	123
49	The Maternal Immune Response to in Utero Hematopoietic Stem Cell Transplantation Blood, 2009, 114, 64-64.	0.6	0
50	Persistent Expression of hF.IX After Tolerance Induction by In Utero or Neonatal Administration of AAV-1-F.IX in Hemophilia B Mice. Molecular Therapy, 2007, 15, 1677-1685.	3.7	96