
Carlos Barreiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1114339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent developments in genome design and assembly tools. , 2022, , 45-65.		2
2	Characterization of the Gene Encoding S-adenosyl-L-methionine (AdoMet) Synthetase in Penicillium chrysogenum; Role in Secondary Metabolism and Penicillin Production. Microorganisms, 2022, 10, 78.	3.6	2
3	Characterization of Microbial Diversity in Decayed Wood from a Spanish Forest: An Environmental Source of Industrially Relevant Microorganisms. Microorganisms, 2022, 10, 1249.	3.6	6
4	Worldwide Clinical Demand for Antibiotics: Is It a Real Countdown?. Methods in Molecular Biology, 2021, 2296, 3-15.	0.9	10
5	Screening of Antibiotic Gene Clusters in Microorganisms Isolated from Wood. Methods in Molecular Biology, 2021, 2296, 151-165.	0.9	2
6	Comparative proteome analyses highlight several exerciseâ€like responses of mouse sciatic nerve after IP injection of irisin. European Journal of Neuroscience, 2021, 53, 3262-3277.	2.6	6
7	Using Rhizosphere Phosphate Solubilizing Bacteria to Improve Barley (Hordeum vulgare) Plant Productivity. Microorganisms, 2021, 9, 1619.	3.6	15
8	Muscles proteome analysis; irisin administration mimics some molecular effects of exercise in quadriceps muscle. Biochimie, 2021, 189, 144-157.	2.6	8
9	Microbial Isolation and Characterization of New Antibiotic-Producing Strains from Decayed Wood. Methods in Molecular Biology, 2021, 2296, 43-57.	0.9	1
10	lrisin injection mimics exercise effects on the brain proteome. European Journal of Neuroscience, 2021, 54, 7422-7441.	2.6	10
11	Main Carotenoids Produced by Microorganisms. Encyclopedia, 2021, 1, 1223-1245.	4.5	23
12	Omics Approaches Applied to Penicillium chrysogenum and Penicillin Production: Revealing the Secrets of Improved Productivity. Genes, 2020, 11, 712.	2.4	22
13	Fungal Horizontal Gene Transfer: A History Beyond the Phylogenetic Kingdoms. , 2019, , 315-336.		5
14	Proteomics and Penicillium chrysogenum: Unveiling the secrets behind penicillin production. Journal of Proteomics, 2019, 198, 119-131.	2.4	21
15	Regulation of the phosphate metabolism in Streptomyces genus: impact on the secondary metabolites. Applied Microbiology and Biotechnology, 2019, 103, 1643-1658.	3.6	27
16	Catabolism of phenylacetic acid in Penicillium rubens. Proteome-wide analysis in response to the benzylpenicillin side chain precursor. Journal of Proteomics, 2018, 187, 243-259.	2.4	22
17	Carotenoids Production: A Healthy and Profitable Industry. Methods in Molecular Biology, 2018, 1852, 45-55.	0.9	30
18	Analysis and validation of the pho regulon in the tacrolimus-producer strain Streptomyces tsukubaensis: differences with the model organism Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2018, 102, 7029-7045.	3.6	8

CARLOS BARREIRO

#	Article	IF	CITATIONS
19	Casein phosphopeptides and CaCl2 increase penicillin production and cause an increment in microbody/peroxisome proteins in Penicillium chrysogenum. Journal of Proteomics, 2017, 156, 52-62.	2.4	16
20	RNA-Seq-Based Comparative Transcriptomics: RNA Preparation and Bioinformatics. Methods in Molecular Biology, 2017, 1645, 59-72.	0.9	14
21	Biosynthesis of Astaxanthin as a Main Carotenoid in the Heterobasidiomycetous Yeast Xanthophyllomyces dendrorhous. Journal of Fungi (Basel, Switzerland), 2017, 3, 44.	3.5	92
22	Intra- and Extra-cellular Proteome Analyses of Steroid-Producer Mycobacteria. Methods in Molecular Biology, 2017, 1645, 73-92.	0.9	2
23	Biotypes analysis of Corynebacterium glutamicum growing in dicarboxylic acids demonstrates the existence of industrially-relevant intra-species variations. Journal of Proteomics, 2016, 146, 172-183.	2.4	2
24	Glycopeptides and Bacterial Cell Walls. , 2014, , 285-311.		3
25	Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506). Applied Microbiology and Biotechnology, 2014, 98, 497-507.	3.6	58
26	The gamma-butyrolactone receptors BulR1 and BulR2 of Streptomyces tsukubaensis: tacrolimus (FK506) and butyrolactone synthetases production control. Applied Microbiology and Biotechnology, 2014, 98, 4919-4936.	3.6	40
27	Taxonomy and chemically semi-defined media for the analysis of the tacrolimus producer â€~Streptomyces tsukubaensis'. Applied Microbiology and Biotechnology, 2013, 97, 2139-2152.	3.6	51
28	Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C4 and C5 dicarboxylic acids. Journal of Proteomics, 2013, 85, 65-88.	2.4	12
29	The inducers 1,3-diaminopropane and spermidine cause the reprogramming of metabolism in Penicillium chrysogenum, leading to multiple vesicles and penicillin overproduction. Journal of Proteomics, 2013, 85, 129-159.	2.4	26
30	Transcriptional control of the <scp><i>F</i></scp> ₀ <scp>F</scp> ₁ â€ <scp>ATP</scp> synthase operon of <i><scp>C</scp>orynebacterium glutamicum</i> : <scp>SigmaH</scp> factor binds to its promoter and regulates its expression at different <scp>pH</scp> values. Microbial Biotechnology, 2013, 6, 178-188.	4.2	10
31	Draft Genome of Streptomyces tsukubaensis NRRL 18488, the Producer of the Clinically Important Immunosuppressant Tacrolimus (FK506). Journal of Bacteriology, 2012, 194, 3756-3757.	2.2	46
32	Proteomics Shows New Faces for the Old Penicillin Producer <i>Penicillium chrysogenum</i> . Journal of Biomedicine and Biotechnology, 2012, 2012, 1-15.	3.0	47
33	FK506 biosynthesis is regulated by two positive regulatory elements in Streptomyces tsukubaensis. BMC Microbiology, 2012, 12, 238.	3.3	45
34	Casein phosphopeptides drastically increase the secretion of extracellular proteins in Aspergillus awamori. Proteomics studies reveal changes in the secretory pathway. Microbial Cell Factories, 2012, 11, 5.	4.0	24
35	Characterisation of a Î ³ -butyrolactone receptor of Streptomyces tacrolimicus: effect on sporulation and tacrolimus biosynthesis. Applied Microbiology and Biotechnology, 2011, 92, 971-984.	3.6	10
36	Streptomyces tacrolimicus sp. nov., a low producer of the immunosuppressant tacrolimus (FK506). International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 1084-1088.	1.7	19

CARLOS BARREIRO

#	Article	IF	CITATIONS
37	Proteome Analysis of the Penicillin Producer Penicillium chrysogenum. Molecular and Cellular Proteomics, 2010, 9, 1182-1198.	3.8	113
38	The Penicillium Chrysogenum Extracellular Proteome. Conversion from a Food-rotting Strain to a Versatile Cell Factory for White Biotechnology. Molecular and Cellular Proteomics, 2010, 9, 2729-2744.	3.8	62
39	Cytoplasmic- and extracellular-proteome analysis of Diplodia seriata: a phytopathogenic fungus involved in grapevine decline. Proteome Science, 2010, 8, 46.	1.7	38
40	Characterization of a novel 2,4,6-trichlorophenol-inducible gene encoding chlorophenol O-methyltransferase from Trichoderma longibrachiatum responsible for the formation of chloroanisoles and detoxification of chlorophenols. Fungal Genetics and Biology, 2010, 47, 458-467.	2.1	16
41	Microarray studies reveal a â€~differential response' to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum. Microbiology (United Kingdom), 2009, 155, 359-372.	1.8	19
42	Two overlapping antiparallel genes encoding the iron regulator DmdR1 and the Adm proteins control sidephore and antibiotic biosynthesis in <i>Streptomyces coelicolor</i> A3(2). FEBS Journal, 2009, 276, 4814-4827.	4.7	46
43	Efficient pyramidal arrangement of an ordered cosmid library: Rapid screening of genes of the tacrolimus-producer Streptomyces sp. ATCC 55098. Journal of Microbiological Methods, 2009, 78, 150-154.	1.6	7
44	Response of the cytoplasmic and membrane proteome of Corynebacterium glutamicum ATCC 13032 to pH changes. BMC Microbiology, 2008, 8, 225.	3.3	20
45	Genomeâ€wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in <i>Streptomyces coelicolor</i> M145 and in a Δ <i>phoP</i> mutant. Proteomics, 2007, 7, 2410-2429.	2.2	121
46	Transcriptional regulation of the desferrioxamine gene cluster ofStreptomyces coelicoloris mediated by binding of DmdR1 to an iron box in the promoter of thedesAgene. FEBS Journal, 2007, 274, 1110-1122.	4.7	54
47	Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH. Microbiology (United Kingdom), 2006, 152, 11-21.	1.8	33
48	Functional analysis of two divalent metal-dependent regulatory genes dmdR1 and dmdR2 in Streptomyces coelicolor and proteome changes in deletion mutants. FEBS Journal, 2005, 272, 725-735.	4.7	27
49	Heat Shock Proteome Analysis of Wild-Type Corynebacterium glutamicum ATCC 13032 and a Spontaneous Mutant Lacking GroEL1, a Dispensable Chaperone. Journal of Bacteriology, 2005, 187, 884-889.	2.2	44
50	Transcriptional Analysis of the <i>groES</i> - <i>groEL1</i> , <i>groEL2</i> , and <i>dnaK</i> genes in <i>Corynebacterium glutamicum</i> : Characterization of Heat Shock-Induced Promoters. Journal of Bacteriology, 2004, 186, 4813-4817.	2.2	50
51	Ribosomal RNA and ribosomal proteins in corynebacteria. Journal of Biotechnology, 2003, 104, 41-53.	3.8	42
52	Organization and Transcriptional Analysis of a Six-Gene Cluster around the rplK-rplA Operon of Corynebacterium glutamicum Encoding the Ribosomal Proteins L11 and L1. Applied and Environmental Microbiology, 2001, 67, 2183-2190.	3.1	16
53	Characterization of the Ribosomal rrnD Operon of the Cephamycin-Producer â€ [~] Nocardia lactamdurans' Shows that this Actinomycete Belongs to the Genus Amycolatopsis. Systematic and Applied Microbiology, 2000, 23, 15-24.	2.8	14
54	Proteomics Methodology Applied to the Analysis of Filamentous Fungi - New Trends for an Impressive Diverse Group of Organisms. , 0, , .		3