
Clemens A Van Blitterswijk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11142679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The response of three-dimensional pancreatic alpha and beta cell co-cultures to oxidative stress. PLoS ONE, 2022, 17, e0257578.	2.5	2
2	Assessment of Cell–Material Interactions in Three Dimensions through Dispersed Coaggregation of Microsized Biomaterials into Tissue Spheroids. Small, 2022, 18, .	10.0	7
3	Oxidative stress in pancreatic alpha and beta cells as a selection criterion for biocompatible biomaterials. Biomaterials, 2021, 267, 120449.	11.4	11
4	The Role of Pancreatic Alpha Cells and Endothelial Cells in the Reduction of Oxidative Stress in Pseudoislets. Frontiers in Bioengineering and Biotechnology, 2021, 9, 729057.	4.1	4
5	PEOT/PBT Polymeric Pastes to Fabricate Additive Manufactured Scaffolds for Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 704185.	4.1	1
6	The Role of Alpha Cells in the Self-Assembly of Bioengineered Islets. Tissue Engineering - Part A, 2020, 27, 1055-1063.	3.1	3
7	Cell culture dimensionality influences mesenchymal stem cell fate through cadherin-2 and cadherin-11. Biomaterials, 2020, 254, 120127.	11.4	13
8	Overcoming kidney organoid challenges for regenerative medicine. Npj Regenerative Medicine, 2020, 5, 8.	5.2	48
9	Building Complex Life Through Self-Organization. Tissue Engineering - Part A, 2019, 25, 1341-1346.	3.1	17
10	Oxygen and nutrient delivery in tissue engineering: Approaches to graft vascularization. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1815-1829.	2.7	87
11	Blastocyst-like structures generated solely from stem cells. Nature, 2018, 557, 106-111.	27.8	366
12	An antibody based approach for multi-coloring osteogenic and chondrogenic proteins in tissue engineered constructs. Biomedical Materials (Bristol), 2018, 13, 044102.	3.3	4
13	Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: A comparative study. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e150-e158.	2.7	65
14	Redox regulation in regenerative medicine and tissue engineering: The paradox of oxygen. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 2013-2020.	2.7	36
15	The Components of Bone and What They Can Teach Us about Regeneration. Materials, 2018, 11, 14.	2.9	65
16	<i>O</i> -Phenanthroline as modulator of the hypoxic and catabolic response in cartilage tissue-engineering models. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 724-732.	2.7	2
17	Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line. Tissue Engineering - Part A, 2017, 23, 458-469.	3.1	14
18	Cells responding to surface structure of calcium phosphate ceramics for bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3273-3283.	2.7	18

#	Article	IF	CITATIONS
19	Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis. Acta Biomaterialia, 2017, 57, 487-497.	8.3	45
20	Calcium phosphates and silicon: exploring methods of incorporation. Biomaterials Research, 2017, 21, 6.	6.9	11
21	Linking the Transcriptional Landscape of Bone Induction to Biomaterial Design Parameters. Advanced Materials, 2017, 29, 1603259.	21.0	34
22	Covalent Binding of Bone Morphogenetic Proteinâ€2 and Transforming Growth Factorâ€Î²3 to 3D Plotted Scaffolds for Osteochondral Tissue Regeneration. Biotechnology Journal, 2017, 12, 1700072.	3.5	46
23	Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication, 2017, 9, 031001.	7.1	121
24	Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation. Macromolecular Rapid Communications, 2017, 38, 1700186.	3.9	15
25	Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation. Frontiers in Bioengineering and Biotechnology, 2017, 5, 6.	4.1	45
26	The Use of Finite Element Analyses to Design and Fabricate Three-Dimensional Scaffolds for Skeletal Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2017, 5, 30.	4.1	36
27	Human mesenchymal stromal cells response to biomimetic octacalcium phosphate containing strontium. Journal of Biomedical Materials Research - Part A, 2016, 104, 1946-1960.	4.0	21
28	Biological and Tribological Assessment of Poly(Ethylene Oxide Terephthalate)/Poly(Butylene) Tj ETQq0 0 0 rgBT Regeneration. Advanced Healthcare Materials, 2016, 5, 232-243.	Overlock 7.6	10 Tf 50 387 11
29	Hybrid Polycaprolactone/Alginate Scaffolds Functionalized with VEGF to Promote de Novo Vessel Formation for the Transplantation of Islets of Langerhans. Advanced Healthcare Materials, 2016, 5, 1606-1616.	7.6	60
30	Mimicking natural cell environments: design, fabrication and application of bio-chemical gradients on polymeric biomaterial substrates. Journal of Materials Chemistry B, 2016, 4, 4244-4257.	5.8	37
31	Scalable topographies to support proliferation and Oct4 expression by human induced pluripotent stem cells. Scientific Reports, 2016, 6, 18948.	3.3	65
32	Flexible Yttrium-Stabilized Zirconia Nanofibers Offer Bioactive Cues for Osteogenic Differentiation of Human Mesenchymal Stromal Cells. ACS Nano, 2016, 10, 5789-5799.	14.6	62
33	Stimulatory effect of cobalt ions incorporated into calcium phosphate coatings on neovascularization in an in vivo intramuscular model in goats. Acta Biomaterialia, 2016, 36, 267-276.	8.3	36
34	Combinatorial incorporation of fluoride and cobalt ions into calcium phosphates to stimulate osteogenesis and angiogenesis. Biomedical Materials (Bristol), 2016, 11, 015020.	3.3	33
35	Monolithic calcium phosphate/poly(lactic acid) composite versus calcium phosphate-coated poly(lactic acid) for support of osteogenic differentiation of human mesenchymal stromal cells. Journal of Materials Science: Materials in Medicine, 2016, 27, 54.	3.6	11
36	Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for <i>In Vitro</i> Tissue Engineering. Tissue Engineering - Part B: Reviews, 2016, 22, 265-283.	4.8	19

#	Article	IF	CITATIONS
37	Chondrocytes Cocultured with Stromal Vascular Fraction of Adipose Tissue Present More Intense Chondrogenic Characteristics Than with Adipose Stem Cells. Tissue Engineering - Part A, 2016, 22, 336-348.	3.1	24
38	Adhesion and proliferation of cells and bacteria on microchip with different surfaces microstructures. Biomedizinische Technik, 2016, 61, 475-482.	0.8	5
39	Exploring the Materialâ€Induced Transcriptional Landscape of Osteoblasts on Bone Graft Materials. Advanced Healthcare Materials, 2015, 4, 1691-1700.	7.6	12
40	Microporous calcium phosphate ceramics driving osteogenesis through surface architecture. Journal of Biomedical Materials Research - Part A, 2015, 103, 1188-1199.	4.0	54
41	Distribution and Viability of Fetal and Adult Human Bone Marrow Stromal Cells in a Biaxial Rotating Vessel Bioreactor after Seeding on Polymeric 3D Additive Manufactured Scaffolds. Frontiers in Bioengineering and Biotechnology, 2015, 3, 169.	4.1	18
42	Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materials. Acta Biomaterialia, 2015, 17, 1-15.	8.3	56
43	Creeping Proteins in Microporous Structures: Polymer Brushâ€Assisted Fabrication of 3D Gradients for Tissue Engineering. Advanced Healthcare Materials, 2015, 4, 1169-1174.	7.6	39
44	Plug and play: combining materials and technologies to improve bone regenerative strategies. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 745-759.	2.7	21
45	Monitoring nutrient transport in tissue-engineered grafts. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 952-960.	2.7	32
46	An Open Source Image Processing Method to Quantitatively Assess Tissue Growth after Non-Invasive Magnetic Resonance Imaging in Human Bone Marrow Stromal Cell Seeded 3D Polymeric Scaffolds. PLoS ONE, 2014, 9, e115000.	2.5	6
47	Suppression of the immune system as a critical step for bone formation from allogeneic osteoprogenitors implanted in rats. Journal of Cellular and Molecular Medicine, 2014, 18, 134-142.	3.6	23
48	In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomatter, 2014, 4, e27664.	2.6	89
49	The size of surface microstructures as an osteogenic factor in calcium phosphate ceramics. Acta Biomaterialia, 2014, 10, 3254-3263.	8.3	133
50	Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13954-13959.	7.1	104
51	Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1559-1569.	3.3	59
52	Inflammatory response and bone healing capacity of two porous calcium phosphate ceramics in critical size cortical bone defects. Journal of Biomedical Materials Research - Part A, 2014, 102, 1399-1407.	4.0	27
53	Development of materials for regenerative medicine: from clinical need to clinical application. , 2013, , 155-176.		1
54	Bioinformatics-based selection of a model cell type for inÂvitro biomaterial testing. Biomaterials, 2013, 34, 5552-5561.	11.4	11

#	Article	IF	CITATIONS
55	Cell Sources for Articular Cartilage Repair Strategies: Shifting from Monocultures to Cocultures. Tissue Engineering - Part B: Reviews, 2013, 19, 31-40.	4.8	65
56	Engineering New Bone via a Minimally Invasive Route Using Human Bone Marrow-Derived Stromal Cell Aggregates, Microceramic Particles, and Human Platelet-Rich Plasma Gel. Tissue Engineering - Part A, 2013, 19, 340-349.	3.1	12
57	GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthritis and are regulated by osteoarthritis-associated factors. Arthritis Research and Therapy, 2013, 15, R126.	3.5	74
58	The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate. Biomaterials, 2013, 34, 2167-2176.	11.4	102
59	Predicting the therapeutic efficacy of MSC in bone tissue engineering using the molecular marker CADM1. Biomaterials, 2013, 34, 4592-4601.	11.4	53
60	A small molecule approach to engineering vascularized tissue. Biomaterials, 2013, 34, 3053-3063.	11.4	31
61	Mesenchymal stromal cell-derived extracellular matrix influences gene expression of chondrocytes. Biofabrication, 2013, 5, 025003.	7.1	30
62	Fibroblast Growth Factor-1 Is a Mesenchymal Stromal Cell-Secreted Factor Stimulating Proliferation of Osteoarthritic Chondrocytes in Co-Culture. Stem Cells and Development, 2013, 22, 2356-2367.	2.1	64
63	<i>In vivo</i> screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal. Integrative Biology (United Kingdom), 2013, 5, 889-898.	1.3	31
64	Thin Polymer Brush Decouples Biomaterial's Micro-/Nanotopology and Stem Cell Adhesion. Langmuir, 2013, 29, 13843-13852.	3.5	31
65	A Dual Flow Bioreactor with Controlled Mechanical Stimulation for Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 2013, 19, 774-783.	2.1	29
66	Label-free Raman monitoring of extracellular matrix formation in three-dimensional polymeric scaffolds. Journal of the Royal Society Interface, 2013, 10, 20130464.	3.4	43
67	T Cell Factor 4 Is a Pro-catabolic and Apoptotic Factor in Human Articular Chondrocytes by Potentiating Nuclear Factor κB Signaling. Journal of Biological Chemistry, 2013, 288, 17552-17558.	3.4	58
68	Small molecule inhibitors of WNT/β-catenin signaling block IL-1β- and TNFα-induced cartilage degradation. Arthritis Research and Therapy, 2013, 15, R93.	3.5	32
69	Microwell Scaffolds for the Extrahepatic Transplantation of Islets of Langerhans. PLoS ONE, 2013, 8, e64772.	2.5	56
70	Fabrication, Characterization and Cellular Compatibility of Poly(Hydroxy Alkanoate) Composite Nanofibrous Scaffolds for Nerve Tissue Engineering. PLoS ONE, 2013, 8, e57157.	2.5	113
71	Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering. PLoS ONE, 2013, 8, e55451.	2.5	105
72	Recognizing different tissues in human fetal femur cartilage by label-free Raman microspectroscopy. Journal of Biomedical Optics, 2012, 17, 116012.	2.6	38

#	Article	IF	CITATIONS
73	Diverse Effects of Cyclic AMP Variants on Osteogenic and Adipogenic Differentiation of Human Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2012, 18, 1431-1442.	3.1	14
74	Sonic Hedgehog-activated engineered blood vessels enhance bone tissue formation. Proceedings of the United States of America, 2012, 109, 4413-4418.	7.1	62
75	Patterns of Amino Acid Metabolism by Proliferating Human Mesenchymal Stem Cells. Tissue Engineering - Part A, 2012, 18, 654-664.	3.1	33
76	Tissue deformation spatially modulates VEGF signaling and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6886-6891.	7.1	134
77	Forskolin Enhances <i>In Vivo</i> Bone Formation by Human Mesenchymal Stromal Cells. Tissue Engineering - Part A, 2012, 18, 558-567.	3.1	34
78	Trophic Effects of Mesenchymal Stem Cells in Chondrocyte Co-Cultures are Independent of Culture Conditions and Cell Sources. Tissue Engineering - Part A, 2012, 18, 1542-1551.	3.1	186
79	The physics of tissue formation with mesenchymal stem cells. Trends in Biotechnology, 2012, 30, 583-590.	9.3	8
80	Hypoxia Inhibits Hypertrophic Differentiation and Endochondral Ossification in Explanted Tibiae. PLoS ONE, 2012, 7, e49896.	2.5	36
81	Streamlining the generation of an osteogenic graft by 3D culture of unprocessed bone marrow on ceramic scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 103-112.	2.7	12
82	A Wnt/βâ€catenin negative feedback loop inhibits interleukinâ€1–induced matrix metalloproteinase expression in human articular chondrocytes. Arthritis and Rheumatism, 2012, 64, 2589-2600.	6.7	79
83	Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials, 2012, 33, 1281-1290.	11.4	488
84	Self-attaching and cell-attracting in-situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair. Biomaterials, 2012, 33, 3164-3174.	11.4	79
85	A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials, 2012, 33, 3205-3215.	11.4	363
86	The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation. Biomaterials, 2012, 33, 3651-3661.	11.4	76
87	'Smart' biomaterials and osteoinductivity. Nature Reviews Rheumatology, 2011, 7, 1-1.	8.0	9
88	Chitosan Scaffolds Containing Hyaluronic Acid for Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 2011, 17, 717-730.	2.1	149
89	Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. Journal of Controlled Release, 2011, 152, 186-195.	9.9	127
90	Differential bone-forming capacity of osteogenic cells from either embryonic stem cells or bone marrow-derived mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 180-190.	2.7	21

CLEMENS A VAN BLITTERSWIJK

#	Article	IF	CITATIONS
91	Chitosan/Poly(É›-caprolactone) blend scaffolds for cartilage repair. Biomaterials, 2011, 32, 1068-1079.	11.4	204
92	Pro-osteogenic trophic effects by PKA activation in human mesenchymal stromal cells. Biomaterials, 2011, 32, 6089-6098.	11.4	33
93	Trophic Effects of Mesenchymal Stem Cells Increase Chondrocyte Proliferation and Matrix Formation. Tissue Engineering - Part A, 2011, 17, 1425-1436.	3.1	259
94	Model to Design Multilayer Tissue Engineering Scaffolds. Macromolecular Symposia, 2011, 309-310, 84-92.	0.7	2
95	An algorithm-based topographical biomaterials library to instruct cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16565-16570.	7.1	355
96	Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. , 2011, 21, 407-429.		415
97	Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomaterialia, 2010, 6, 4208-4217.	8.3	339
98	Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds. Biomaterials, 2010, 31, 8696-8705.	11.4	78
99	Relating cell proliferation to <i>in vivo</i> bone formation in porous Ca/P scaffolds. Journal of Biomedical Materials Research - Part A, 2010, 92A, 303-310.	4.0	13
100	Fabrication of Bioactive Composite Scaffolds by Electrospinning for Bone Regeneration. Macromolecular Bioscience, 2010, 10, 1365-1373.	4.1	52
101	Comparison of two carbonated apatite ceramics in vivo. Acta Biomaterialia, 2010, 6, 2219-2226.	8.3	53
102	The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts. Biomaterials, 2010, 31, 2976-2989.	11.4	150
103	The role of three-dimensional polymeric scaffold configuration on the uniformity of connective tissue formation by adipose stromal cells. Biomaterials, 2010, 31, 4322-4329.	11.4	29
104	Skeletal tissue engineering using embryonic stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 165-180.	2.7	45
105	Biomimetic calcium phosphate coatings on recombinant spider silk fibres. Biomedical Materials (Bristol), 2010, 5, 045002.	3.3	26
106	Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13614-13619.	7.1	618
107	A Newly Developed Chemically Crosslinked Dextran–Poly(Ethylene Glycol) Hydrogel for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 565-573.	3.1	56
108	Functional Tissue Engineering Through Biofunctional Macromolecules and Surface Design. MRS Bulletin, 2010, 35, 584-590.	3.5	11

CLEMENS A VAN BLITTERSWIJK

#	Article	IF	CITATIONS
109	Enzymatically Crosslinked Dextran-Tyramine Hydrogels as Injectable Scaffolds for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 2429-2440.	3.1	122
110	Primary chondrocytes enhance cartilage tissue formation upon co-culture with a range of cell types. Soft Matter, 2010, 6, 5080.	2.7	38
111	Goat Bone Tissue Engineering: Comparing an Intramuscular with a Posterolateral Lumbar Spine Location. Tissue Engineering - Part A, 2010, 16, 685-693.	3.1	5
112	The Effect of Perfluorocarbon-Based Artificial Oxygen Carriers on Tissue-Engineered Trachea. Tissue Engineering - Part A, 2009, 15, 2471-2480.	3.1	28
113	The effect of bone marrow aspiration strategy on the yield and quality of human mesenchymal stem cells. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 80, 618-621.	3.3	66
114	Relevance of bone graft viability in a goat transverse process model. Journal of Orthopaedic Research, 2009, 27, 1055-1059.	2.3	11
115	Tissue assembly and organization: Developmental mechanisms in microfabricated tissues. Biomaterials, 2009, 30, 4851-4858.	11.4	122
116	Development and analysis of multi-layer scaffolds for tissue engineering. Biomaterials, 2009, 30, 6228-6239.	11.4	97
117	Supply of Nutrients to Cells in Engineered Tissues. Biotechnology and Genetic Engineering Reviews, 2009, 26, 163-178.	6.2	149
118	The Use of Endothelial Progenitor Cells for Prevascularized Bone Tissue Engineering. Tissue Engineering - Part A, 2009, 15, 2015-2027.	3.1	103
119	The effect of calcium phosphate microstructure on bone-related cells in vitro. Biomaterials, 2008, 29, 3306-3316.	11.4	237
120	Comparative in vivo study of six hydroxyapatiteâ€based bone graft substitutes. Journal of Orthopaedic Research, 2008, 26, 1363-1370.	2.3	196
121	Trends in biomaterials research: An analysis of the scientific programme of the World Biomaterials Congress 2008. Biomaterials, 2008, 29, 3047-3052.	11.4	29
122	Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials, 2008, 29, 944-953.	11.4	311
123	Cell based bone tissue engineering in jaw defects. Biomaterials, 2008, 29, 3053-3061.	11.4	191
124	Vascularization in tissue engineering. Trends in Biotechnology, 2008, 26, 434-441.	9.3	1,032
125	Endochondral bone tissue engineering using embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6840-6845.	7.1	231
126	Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction. Interactive Cardiovascular and Thoracic Surgery, 2008, 8, 27-30.	1.1	11

CLEMENS A VAN BLITTERSWIJK

#	Article	IF	CITATIONS
127	Potential of embryonic stem cells for <i>in vivo</i> bone regeneration. Regenerative Medicine, 2008, 3, 783-785.	1.7	8
128	Critical Steps toward a Tissue-Engineered Cartilage Implant Using Embryonic Stem Cells. Tissue Engineering - Part A, 2008, 14, 135-147.	3.1	54
129	Regenerating Articular Tissue by Converging Technologies. PLoS ONE, 2008, 3, e3032.	2.5	35
130	Critical Steps toward a Tissue-Engineered Cartilage Implant Using Embryonic Stem Cells. Tissue Engineering, 2008, 14, 135-147.	4.6	4
131	Cell-Based Bone Tissue Engineering. PLoS Medicine, 2007, 4, e9.	8.4	263
132	Anatomical 3D Fiber-Deposited Scaffolds for Tissue Engineering: Designing a Neotrachea. Tissue Engineering, 2007, 13, 2483-2493.	4.6	35
133	Fabrication of Porous Ti ₆ Al ₄ V with Designed Structure by Rapid Prototyping Technology. Key Engineering Materials, 2007, 330-332, 1293-1296.	0.4	7
134	A Rapid and Efficient Method for Expansion of Human Mesenchymal Stem Cells. Tissue Engineering, 2007, 13, 3-9.	4.6	158
135	Analysis of ectopic and orthotopic bone formation in cell-based tissue-engineered constructs in goats. Biomaterials, 2007, 28, 1798-1805.	11.4	79
136	Co-culture in cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 170-178.	2.7	126
137	Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials, 2007, 28, 2810-2820.	11.4	349
138	Biological performance in goats of a porous titanium alloy–biphasic calcium phosphate composite. Biomaterials, 2007, 28, 4209-4218.	11.4	48
139	Intracellular degradation of microspheres based on cross-linked dextran hydrogels or amphiphilic block copolymers: a comparative raman microscopy study. International Journal of Nanomedicine, 2007, 2, 241-52.	6.7	4
140	Endothelial Cells Assemble into a 3-Dimensional Prevascular Network in a Bone Tissue Engineering Construct. Tissue Engineering, 2006, 12, 2685-2693.	4.6	302
141	Modulation of Chondrocyte Phenotype for Tissue Engineering by Designing the Biologicâ "Polymer Carrier Interface. Biomacromolecules, 2006, 7, 3012-3018.	5.4	20
142	Cross-species Comparison of Ectopic Bone Formation in Biphasic Calcium Phosphate (BCP) and Hydroxyapatite (HA) Scaffolds. Tissue Engineering, 2006, 12, 1607-1615.	4.6	153
143	A new in vivo screening model for posterior spinal bone formation: Comparison of ten calcium phosphate ceramic material treatments. Biomaterials, 2006, 27, 302-314.	11.4	44
144	The regulation of expanded human nasal chondrocyte re-differentiation capacity by substrate composition and gas plasma surface modification. Biomaterials, 2006, 27, 1043-1053.	11.4	78

#	Article	IF	CITATIONS
145	A perfusion bioreactor system capable of producing clinically relevant volumes of tissue-engineered bone: In vivo bone formation showing proof of concept. Biomaterials, 2006, 27, 315-323.	11.4	165
146	Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment. Biomaterials, 2006, 27, 1223-1235.	11.4	202
147	Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds. Biomaterials, 2006, 27, 4911-4922.	11.4	225
148	The effect of cell-based bone tissue engineering in a goat transverse process model. Biomaterials, 2006, 27, 5099-5106.	11.4	67
149	Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness. Biomaterials, 2006, 27, 5918-5926.	11.4	77
150	Osteoinduction by biomaterials—Physicochemical and structural influences. Journal of Biomedical Materials Research - Part A, 2006, 77A, 747-762.	4.0	264
151	Evaluation of chondrogenesis within PEGT: PBT scaffolds with high PEG content. Journal of Biomedical Materials Research - Part A, 2006, 79A, 216-222.	4.0	11
152	Relevance of Osteoinductive Biomaterials in Critical-Sized Orthotopic Defect. Journal of Orthopaedic Research, 2006, 24, 867-876.	2.3	152
153	Biphasic Polymeric Shell-Core 3D Fiber Deposited Scaffolds Enhance Chondrocyte Differentiation. Materials Research Society Symposia Proceedings, 2006, 925, 1.	0.1	0
154	Cross-species Comparison of Ectopic Bone Formation in Biphasic Calcium Phosphate (BCP) and Hydroxyapatite (HA) Scaffolds. Tissue Engineering, 2006, .	4.6	1
155	A Rapid and Efficient Method for Expansion of Human Mesenchymal Stem Cells. Tissue Engineering, 2006, .	4.6	1
156	Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. International Journal of Nanomedicine, 2006, 1, 317-32.	6.7	276
157	Biological performance of uncoated and octacalcium phosphate-coated Ti6Al4V. Biomaterials, 2005, 26, 23-36.	11.4	205
158	3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials, 2005, 26, 3565-3575.	11.4	542
159	Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs. Biomaterials, 2005, 26, 5231-5239.	11.4	103
160	Engineering vascularized skeletal muscle tissue. Nature Biotechnology, 2005, 23, 879-884.	17.5	1,153
161	Synthetic scaffold morphology controls human dermal connective tissue formation. Journal of Biomedical Materials Research - Part A, 2005, 74A, 523-532.	4.0	79
162	Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition. Biomaterials, 2005, 26, 2479-2489.	11.4	151

#	Article	IF	CITATIONS
163	Optimization of bone-tissue engineering in goats. Journal of Biomedical Materials Research Part B, 2004, 69B, 113-120.	3.1	45
164	Bone tissue engineering in a critical size defect compared to ectopic implantations in the goat. Journal of Orthopaedic Research, 2004, 22, 544-551.	2.3	123
165	Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials, 2004, 25, 2901-2910.	11.4	165
166	Stimulation of Skin Repair Is Dependent on Fibroblast Source and Presence of Extracellular Matrix. Tissue Engineering, 2004, 10, 1054-1064.	4.6	50
167	Raman Imaging of PLGA Microsphere Degradation Inside Macrophages. Journal of the American Chemical Society, 2004, 126, 13226-13227.	13.7	99
168	IMPROVED ENZYMATIC ISOLATION OF FIBROBLASTS FOR THE CREATION OF AUTOLOGOUS SKIN SUBSTITUTES. In Vitro Cellular and Developmental Biology - Animal, 2004, 40, 268.	1.5	33
169	Adhesion-mediated signal transduction in human articular chondrocytes: the influence of biomaterial chemistry and tenascin-C. Experimental Cell Research, 2004, 301, 179-188.	2.6	60
170	Optimization of bone tissue engineering in goats: a peroperative seeding method using cryopreserved cells and localized bone formation in calcium phosphate scaffolds1. Transplantation, 2004, 77, 359-365.	1.0	49
171	Osteogenicity of autologous bone transplants in the goat. Transplantation, 2004, 77, 504-509.	1.0	13
172	Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. Journal of Biomedical Materials Research - Part A, 2003, 66A, 779-788.	4.0	210
173	Engineering of a Dermal Equivalent: Seeding and Culturing Fibroblasts in PEGT/PBT Copolymer Scaffolds. Tissue Engineering, 2003, 9, 909-917.	4.6	26
174	Biomimetic Hydroxyapatite Coating on Metal Implants. Journal of the American Ceramic Society, 2002, 85, 517-522.	3.8	447
175	Bone induction by porous glass ceramic made from Bioglass� (45S5). Journal of Biomedical Materials Research Part B, 2001, 58, 270-276.	3.1	201
176	The different behaviors of skeletal muscle cells and chondrocytes on PEGT/PBT block copolymers are related to the surface properties of the substrate. Journal of Biomedical Materials Research Part B, 2001, 54, 47-58.	3.1	45
177	Bone Induction by Implants Coated with Cultured Osteogenic Bone Marrow Cells. Advances in Dental Research, 1999, 13, 74-81.	3.6	82
178	Bilayered biodegradable poly(ethylene glycol)/poly(butylene terephthalate) copolymer (Polyactive?) as substrate for human fibroblasts and keratinocytes. Journal of Biomedical Materials Research Part B, 1999, 47, 292-300.	3.1	59
179	Critical Size Defect in the Goat's Os Ilium. Clinical Orthopaedics and Related Research, 1999, 364, 231-239.	1.5	83
180	Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT		97

copolymer matrix. , 1998, 40, 490-497.

97

#	Article	IF	CITATIONS
181	Dermal regeneration in full-thickness wounds in Yucatan miniature pigs using a biodegradable copolymer. Wound Repair and Regeneration, 1998, 6, 556-568.	3.0	55
182	Effect of HA-1A Monoclonal IGM Antibody on Endotoxin-Induced Proliferation of Cultured Rat Middle Ear Epithelium. Annals of Otology, Rhinology and Laryngology, 1995, 104, 226-230.	1.1	3
183	Culture of Middle Ear Epithelium: A review. Acta Oto-Laryngologica, 1993, 113, 75-79.	0.9	9
184	Primary Culture of Chinchilla Middle Ear Epithelium. Annals of Otology, Rhinology and Laryngology, 1991, 100, 774-782.	1.1	20
185	Reactions of cells at implant surfaces. Biomaterials, 1991, 12, 187-193.	11.4	52
186	Cytokeratin Patterns of Tissues Related to Cholesteatoma Pathogenesis. Annals of Otology, Rhinology and Laryngology, 1989, 98, 635-640.	1.1	19
187	Culture and Characterization of Rat Middle-ear Epithelium. Acta Oto-Laryngologica, 1986, 101, 453-466.	0.9	53
188	High-content imaging. , 0, , 85-100.		0
189	Introducing materiomics. , 0, , 1-12.		0
190	Microfabrication techniques in materiomics. , 0, , 51-66.		0
191	Bioassay development. , 0, , 67-84.		0
192	Comparison of Porous Ti ₆ Al ₄ V Made by Sponge Replication and Directly 3D Fiber Deposition and Cancellous Bone. Key Engineering Materials, 0, 330-332, 999-1002.	0.4	7
193	Computational analysis of high-throughput material screens. , 0, , 101-132.		Ο