Edward D Weil

List of Publications by Citations

Source: https://exaly.com/author-pdf/11142428/edward-d-weil-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

4,246 30 53 59 h-index g-index citations papers 4,543 2.3 5.79 59 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
53	A Review of Recent Progress in Phosphorus-based Flame Retardants. <i>Journal of Fire Sciences</i> , 2006 , 24, 345-364	1.5	489
52	Thermal decomposition, combustion and flame-retardancy of epoxy resins review of the recent literature. <i>Polymer International</i> , 2004 , 53, 1901-1929	3.3	442
51	Thermal decomposition, combustion and fire-retardancy of polyurethanes review of the recent literature. <i>Polymer International</i> , 2004 , 53, 1585-1610	3.3	323
50	Thermal decomposition of aliphatic nylons. <i>Polymer International</i> , 1999 , 48, 532-557	3.3	308
49	Flame retardancy of thermoplastic polyesters review of the recent literature. <i>Polymer International</i> , 2005 , 54, 11-35	3.3	281
48	Flame Retardants in Commercial Use or Development for Textiles. <i>Journal of Fire Sciences</i> , 2008 , 26, 24	l3 <u>1</u> 2§81	210
47	Overview of recent developments in the flame retardancy of polycarbonates. <i>Polymer International</i> , 2005 , 54, 981-998	3.3	187
46	Fire-Protective and Flame-Retardant Coatings - A State-of-the-Art Review. <i>Journal of Fire Sciences</i> , 2011 , 29, 259-296	1.5	186
45	Combustion and fire retardancy of aliphatic nylons. <i>Polymer International</i> , 2000 , 49, 1033-1073	3.3	156
44	Oxygen index: Correlations to other fire tests. Fire and Materials, 1992, 16, 159-167	1.8	132
43	Overview of the recent literature on flame retardancy and smoke suppression in PVC. <i>Polymers for Advanced Technologies</i> , 2005 , 16, 707-716	3.2	115
42	Flame Retardants in Commercial Use or Development for Polyolefins. <i>Journal of Fire Sciences</i> , 2008 , 26, 5-43	1.5	107
41	Mechanisms and modes of action in flame retardancy of polymers 2001 , 31-68		88
40	A systems approach to flame retardancy and comments on modes of action. <i>Polymer Degradation and Stability</i> , 1996 , 54, 125-136	4.7	85
39	Flame Retardants in Commercial Use or in Advanced Development in Polycarbonates and Polycarbonate Blends. <i>Journal of Fire Sciences</i> , 2006 , 24, 137-151	1.5	80
38	Flame-Retarding Plastics and Elastomers with Melamine. <i>Journal of Fire Sciences</i> , 1995 , 13, 104-126	1.5	74
37	New developments in flame retardancy of styrene thermoplastics and foams. <i>Polymer International</i> , 2008 , 57, 431-448	3.3	69

(2009-1996)

36	Intumescent flame-retardant system of phosphates and 5,5,5?,5?,5?-hexamethyltris (1,3,2-dioxaphosphorinanemethan)amine 2,2?,2?- trioxide for polyolefins. <i>Journal of Applied Polymer Science</i> , 1996 , 62, 2267-2280	2.9	66	
35	Iron compounds in non-halogen flame-retardant polyamide systems. <i>Polymer Degradation and Stability</i> , 2003 , 82, 291-296	4.7	62	
34	Flame Retardants for Plastics and Textiles 2009 ,		50	
33	Flexible polyurethane foam. II. Fire retardation by tris(1,3-dichloro-2-propyl) phosphate part A. Examination of the vapor phase (the flame). <i>Journal of Applied Polymer Science</i> , 1998 , 68, 217-229	2.9	44	
32	A Survey of Recent Progress in Phosphorus-Based Flame Retardants and Some Mode of Action Studies. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 1999 , 144, 17-20	1	43	
31	Flame Retardants for Polystyrenes in Commercial Use or Development. <i>Journal of Fire Sciences</i> , 2007 , 25, 241-265	1.5	41	
30	Phosphorus oxynitride: a thermally stable fire retardant additive for polyamide 6 and poly(butylene terephthalate). <i>Angewandte Makromolekulare Chemie</i> , 1999 , 264, 48-55		41	
29	Flame and Smoke Retardants in Vinyl Chloride Polymers © Commercial Usage and Current Developments. <i>Journal of Fire Sciences</i> , 2006 , 24, 211-236	1.5	36	
28	Flexible polyurethane foam. II. Fire retardation by tris(1,3-dichloro-2-propyl) phosphate. Part B. Examination of the condensed phase (the pyrolysis zone). <i>Journal of Applied Polymer Science</i> , 1998 , 68, 231-254	2.9	33	
27	Enhanced Flame Retardancy of Polypropylene with Magnesium Hydroxide, Melamine and Novolac. <i>Journal of Fire Sciences</i> , 1998 , 16, 383-404	1.5	23	
26	Influence of the molecular weight of PPO resins and char-forming behavior of polymeric additives on the flame retardancy of EPDM formulations. <i>Journal of Applied Polymer Science</i> , 1998 , 67, 1405-1414	2.9	17	
25	Some Practical and Theoretical Aspects of Melamine as a Flame Retardant. <i>ACS Symposium Series</i> , 1995 , 199-216	0.4	8	
24	Flame Retardants in Commercial Use or Development for Textiles 2009 , 197-225		7	
23	Flame Retardancy 2004,		5	
22	Phosphorus-Containing Polymers and Oligomers 2010 ,		3	
21	Flame Retardants, Phosphorus 2001 ,		3	
20	Current Practice and Recent Commercial Developments in Flame Retardancy of Polyamides 2009 , 85-10	4	2	
19	Flame Retardants in Commercial Use or Advanced Development in Polyurethanes 2009 , 153-178		2	

18	Overview of Modes of Action and Interaction of Flame Retardants 2009 , 241-251	2
17	Flame Retardants in Commercial Use or Development for Unsaturated Polyester, Vinyl Resins, Phenolics 2015 , 187-203	1
16	Overview of Modes of Action and Interaction of Flame Retardants 2015 , 323-338	1
15	Flame Retardants in Commercial Use or Development for Epoxy Resins 2015 , 241-264	1
14	Flame Retardants in Commercial Use or Development for Textiles 2015 , 265-302	1
13	Flame Retardants in Commercial Use or Development for Polyolefins, Olefin Copolymers, and Diene Elastomers 2015 , 5-48	1
12	Phosphorus-Containing Polymers and Oligomers 2006,	1
11	Flame Retardants in Commercial Use or Advanced Development in Polycarbonates and Polycarbonate Blends 2009 , 121-140	1
10	Flame and Smoke Retardants in Vinyl Chloride Polymers ©commercial Usage and Current Developments 2009 , 59-83	О
9	Phosphorus Flame Retardants 2017 , 1-34	
8	Flame Retardants in Commercial Use or Development for Polyurethanes, Polyisocyanurates, and Polyureas 2015 , 205-240	
7	Flame Retardants 2015 , 1-40	
6	Comments on Flammability and Smoke Tests Useful in Development 2015 , 303-321	
5	Flame Retardants in Commercial Use or Development for Polycarbonates and Polycarbonate Blends 2015 , 161-186	
4	Flame Retardants in Commercial Use or Development for Flame Retardancy of Polyamides 2015, 115-140	
3	Flame Retardants in Commercial Use or Development for Polystyrenes, Thermoplastic Styrene Copolymers, and Blends 2015 , 49-81	
2	Comments on Flammability and Smoke Tests 2009 , 227-240	
1	Commercial Flame Retardancy of Unsaturated Polyester, Vinyl Resins, Phenolics and their Composites 2009 , 141-152	