
Qiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1114209/publications.pdf Version: 2024-02-01

ΟΙΑΝΟ ΖΗΑΝΟ

#	Article	IF	CITATIONS
1	A MnO _{<i>x</i>} enhanced atomically dispersed iron–nitrogen–carbon catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2022, 10, 5981-5989.	10.3	18
2	MOFâ€Enabled Ionâ€Regulating Gel Electrolyte for Long ycling Lithium Metal Batteries Under High Voltage. Small, 2022, 18, e2106225.	10.0	26
3	Synthesis of an N, N-diethyl-tert-butylazothioformamide ligand and coordination studies with Copper(I) salts. Inorganic Chemistry Communication, 2021, 124, 108393.	3.9	5
4	Selective hydroxylation of aryl iodides to produce phenols under mild conditions using a supported copper catalyst. RSC Advances, 2021, 11, 25348-25353.	3.6	4
5	Two Cd-Based Luminescent Coordination Polymers Constructed from a Truncated Linker. Inorganic Chemistry, 2021, 60, 2503-2513.	4.0	11
6	Solvent-Free and Phase-Selective Synthesis of Aluminum Trimesate Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 4623-4632.	4.0	16
7	Evolution of 14-Connected Zr ₆ Secondary Building Units through Postsynthetic Linker Incorporation. ACS Applied Materials & Interfaces, 2021, 13, 51945-51953.	8.0	15
8	Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives. Chinese Journal of Catalysis, 2021, 42, 1903-1920.	14.0	45
9	Efficient oxidative desulfurization using a mesoporous Zr-based MOF. Catalysis Today, 2020, 350, 64-70.	4.4	44
10	Rigid Ladder-Type Porous Polymer Networks for Entropically Favorable Gas Adsorption. , 2020, 2, 49-54.		30
11	Zr-Based MOFs for oxidative desulfurization: what matters?. Green Chemistry, 2020, 22, 6351-6356.	9.0	52
12	Microwave-Assisted Synthesis of Zirconium Phosphate Nanoplatelet-Supported Ru-Anadem Nanostructures and Their Catalytic Study for the Hydrogenation of Acetophenone. ACS Applied Materials & Interfaces, 2020, 12, 30670-30679.	8.0	10
13	Molten NaCl-induced MOF-derived carbon-polyhedron decorated carbon-nanosheet with high defects and high N-doping for boosting the removal of carbamazepine from water. Environmental Science: Nano, 2020, 7, 1205-1213.	4.3	29
14	Metal–Organic Frameworks Towards Desulfurization of Fuels. Topics in Current Chemistry, 2020, 378, 17.	5.8	33
15	Atomically dispersed palladium catalyses Suzuki–Miyaura reactions under phosphine-free conditions. Communications Chemistry, 2020, 3, .	4.5	34
16	Metal–Organic Frameworks Towards Desulfurization of Fuels. Topics in Current Chemistry Collections, 2020, , 175-202.	0.5	4
17	A Strategic High Yield Synthesis of 2,5-Dihydroxy-1,4-benzoquinone Based MOFs. Inorganic Chemistry, 2019, 58, 10756-10760.	4.0	15
18	A facile method to introduce iron secondary metal centers into metal–organic frameworks. Journal of Organometallic Chemistry, 2019, 897, 114-119.	1.8	5

QIANG ZHANG

#	Article	IF	CITATIONS
19	Recent Advances in Green Synthesis of Functionalized Phenols from Aromatic Boronic Compounds. European Journal of Organic Chemistry, 2019, 2019, 7307-7321.	2.4	37
20	Atomically Isolated Iron Atom Anchored on Carbon Nanotubes for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 39820-39826.	8.0	49
21	Balancing Noncovalent Interactions in the Self-Assembly of Nonplanar Aromatic Carboxylic Acid MOF Linkers at the Solution/Solid Interface: HOPG vs Au(111). Langmuir, 2019, 35, 5271-5280.	3.5	11
22	Assembling Carbon Pores into Carbon Sheets: Rational Design of Three-Dimensional Carbon Networks for a Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2019, 11, 5911-5918.	8.0	24
23	Cost-effective synthesis and solution processing of porous polymer networks through methanesulfonic acid-mediated aldol triple condensation. Materials Chemistry Frontiers, 2018, 2, 396-401.	5.9	23
24	Adsorptive removal of <i>p</i> -nitrophenol from water with mechano-synthesized porous organic polymers. New Journal of Chemistry, 2018, 42, 20205-20211.	2.8	18
25	Hierarchically porous UiO-66: facile synthesis, characterization and application. Chemical Communications, 2018, 54, 11817-11820.	4.1	47
26	Molecular Association-Induced Emission Shifts for <i>E</i> / <i>Z</i> Isomers and Selective Sensing of Nitroaromatic Explosives. Crystal Growth and Design, 2018, 18, 6197-6203.	3.0	17
27	Nanovoid Incorporated Ir _{<i>x</i>} Cu Metallic Aerogels for Oxygen Evolution Reaction Catalysis. ACS Energy Letters, 2018, 3, 2038-2044.	17.4	129
28	Interconnected Fe, S, N-Codoped Hollow and Porous Carbon Nanorods as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 40298-40306.	8.0	44
29	Transition Metal Complexes for Hydrogen Activation. , 2017, , 43-84.		3
30	Flexible Zirconium Metalâ€Organic Frameworks as Bioinspired Switchable Catalysts. Angewandte Chemie - International Edition, 2016, 55, 10776-10780.	13.8	179
31	Derivation and Decoration of Nets with Trigonal-Prismatic Nodes: A Unique Route to Reticular Synthesis of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 5299-5307.	13.7	84
32	Thermodynamically Guided Synthesis of Mixed-Linker Zr-MOFs with Enhanced Tunability. Journal of the American Chemical Society, 2016, 138, 6636-6642.	13.7	232
33	Flexible Zirconium Metalâ€Organic Frameworks as Bioinspired Switchable Catalysts. Angewandte Chemie, 2016, 128, 10934-10938.	2.0	53
34	Janus Separator of Polypropylene‣upported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium–Sulfur Batteries. Advanced Science, 2016, 3, 1500268.	11.2	294
35	Linker Installation: Engineering Pore Environment with Precisely Placed Functionalities in Zirconium MOFs. Journal of the American Chemical Society, 2016, 138, 8912-8919.	13.7	278
36	Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 14696-14700.	13.8	169

QIANG ZHANG

#	Article	IF	CITATIONS
37	A Reversible Crystallinity-Preserving Phase Transition in Metal–Organic Frameworks: Discovery, Mechanistic Studies, and Potential Applications. Journal of the American Chemical Society, 2015, 137, 7740-7746.	13.7	113
38	Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 3177-3180.	13.7	323
39	Piezofluorochromic Metal–Organic Framework: A Microscissor Lift. Journal of the American Chemical Society, 2015, 137, 10064-10067.	13.7	218
40	A single crystalline porphyrinic titanium metal–organic framework. Chemical Science, 2015, 6, 3926-3930.	7.4	236
41	Synthesis, structure and bonding of a digold complex with bridging triphenylstannyl ligands. Journal of Organometallic Chemistry, 2015, 795, 40-44.	1.8	3
42	Metal–organic polyhedra constructed from dinuclear ruthenium paddlewheels. Inorganica Chimica Acta, 2015, 424, 216-220.	2.4	34
43	Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nature Communications, 2014, 5, 3410.	12.8	602
44	Hierarchical Free‣tanding Carbonâ€Nanotube Paper Electrodes with Ultrahigh Sulfur‣oading for Lithium–Sulfur Batteries. Advanced Functional Materials, 2014, 24, 6105-6112.	14.9	476
45	Facile cleavage of phenyl groups from BiPh3 in its reactions with Os3(CO)10(NCMe)2 and evidence for localization of π-bonding in a bridging benzyne ligand. Journal of Organometallic Chemistry, 2014, 751, 475-481.	1.8	10
46	Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews, 2014, 43, 5561-5593.	38.1	1,792
47	Structures and Bonding of η2-Bridging CO Ligands and Their Influence on the Structures and Rearrangements of Higher Nuclearity Metal Carbonyl Cluster Complexes. Organometallics, 2013, 32, 5171-5179.	2.3	3
48	Studies of the Structures and Bonding of Gold-Bridged Dirhenium Carbonyl Cluster Complexes. Organometallics, 2013, 32, 7540-7546.	2.3	9
49	Tetraruthenium carbonyl complexes containing germyl and stannyl ligands from the reactions of Ru4(CO)13(μ-H)2 with HGePh3 and HSnPh3. Journal of Organometallic Chemistry, 2013, 730, 20-31.	1.8	14
50	Dynamic Rotation of Bridging Aryl Ligands in Unsaturated Metal Carbonyl Cluster Complexes. Organometallics, 2013, 32, 1587-1590.	2.3	10
51	Unsaturated Triosmium Carbonyl Cluster Complexes with Bridging Aryl Ligands: Structures, Bonding, and Transformations. Organometallics, 2013, 32, 6368-6378.	2.3	18
52	Semibridging Phenyl Ligands in Iridium–Copper and Iridium–Silver Cluster Compounds: Synthesis, Structures, and Bonding. Organometallics, 2013, 32, 2416-2426.	2.3	13
53	α-Cleavage of Phenyl Groups from GePh ₃ Ligands in Iridium Carbonyl Cluster Complexes. A Mechanism and Its Role in the Synthesis of Bridging Germylene Ligands. Organometallics, 2012, 31, 2621-2630.	2.3	14
54	Bonding and Reactivity in the Electronically Unsaturated Hydrogen-Bridged Dimer [Ru ₃ (CO) ₈ (μ ₃ -CMe)(μ-H) ₂ (μ ₃ -H)] _{2 Organometallics, 2012, 31, 50-53.}	; ฮาр ;	4

QIANG ZHANG

#	Article	IF	CITATIONS
55	Osmium–Germanium and Osmium–Germanium–Gold Carbonyl Cluster Complexes: Syntheses, Structures, Bonding, and Reactivity. Organometallics, 2012, 31, 8639-8646.	2.3	18
56	Synthesis and Transformations of Triosmium Carbonyl Cluster Complexes Containing Bridging Aryl Ligands. Organometallics, 2012, 31, 2961-2964.	2.3	11
57	Iridium–Ruthenium–gold cluster complexes: Structures, and skeletal Rearrangements. Journal of Organometallic Chemistry, 2012, 706-707, 20-25.	1.8	6
58	Synthesis and Characterizations of Bismuth-Bridged Triiridium Carbonyl Complexes Containing Germyl/Germylene and Stannyl/Stannylene Ligands. Organometallics, 2012, 31, 7264-7271.	2.3	17
59	Tetrarhena-heterocycle from the Palladium-Catalyzed Dimerization of Re ₂ (CO) ₈ (μ-SbPh ₂)(μ-H) Exhibits an Unusual Host–Guest Behavior. Journal of the American Chemical Society, 2011, 133, 12994-12997.	13.7	144
60	Two-Dimensional Bimetallic Carbonyl Cluster Complexes with New Properties and Reactivities. Journal of the American Chemical Society, 2011, 133, 15950-15953.	13.7	16
61	A New Method for Introducing Tin Ligands into Tetrairidium Dodecacarbonyl. Organometallics, 2011, 30, 661-664.	2.3	12
62	Transformations of Triphenylgermyl Ligands in Iridiumâ^'Ruthenium Carbonyl Cluster Complexes. Organometallics, 2011, 30, 328-333.	2.3	18
63	The reactions of Ir(CO)Cl(PPh3)2 with HSnPh3. Journal of Organometallic Chemistry, 2011, 696, 2904-2909.	1.8	5
64	Iridium–Ruthenium Cluster Complexes with SnPh3 Ligands from the Reaction of IrRu3(CO)13(μ-H) with HSnPh3. Journal of Cluster Science, 2010, 21, 371-378.	3.3	4
65	Formation and Optical Properties of Compression-Induced Nanoscale Buckles on Silver Nanowires. ACS Nano, 2009, 3, 1795-1802.	14.6	32