Chris R Triggle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11141702/publications.pdf

Version: 2024-02-01

56 papers 4,488 citations

32 h-index 53 g-index

57 all docs

57 docs citations

57 times ranked

5954 citing authors

#	Article	IF	CITATIONS
1	Metformin: Is it a drug for all reasons and diseases?. Metabolism: Clinical and Experimental, 2022, 133, 155223.	3.4	92
2	Metformin Prevents Hyperglycemia-Associated, Oxidative Stress-Induced Vascular Endothelial Dysfunction: Essential Role for the Orphan Nuclear Receptor Human Nuclear Receptor 4A1 (Nur77). Molecular Pharmacology, 2021, 100, 428-455.	2.3	17
3	A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Frontiers in Endocrinology, 2021, 12, 718942.	3.5	107
4	Why the endothelium? The endothelium as a target to reduce diabetes-associated vascular disease. Canadian Journal of Physiology and Pharmacology, 2020, 98, 415-430.	1.4	36
5	Treatment with a Combination of Metformin and 2-Deoxyglucose Upregulates Thrombospondin-1 in Microvascular Endothelial Cells: Implications in Anti-Angiogenic Cancer Therapy. Cancers, 2019, 11, 1737.	3.7	21
6	Exercise Alleviates Obesity-Induced Metabolic Dysfunction via Enhancing FGF21 Sensitivity in Adipose Tissues. Cell Reports, 2019, 26, 2738-2752.e4.	6.4	115
7	Minimizing Hyperglycemia-Induced Vascular Endothelial Dysfunction by Inhibiting Endothelial Sodium-Glucose Cotransporter 2 and Attenuating Oxidative Stress: Implications for Treating Individuals With Type 2 Diabetes. Canadian Journal of Diabetes, 2019, 43, 510-514.	0.8	23
8	Metformin: The Answer to Cancer in a Flower? Current Knowledge and Future Prospects of Metformin as an Anti-Cancer Agent in Breast Cancer. Biomolecules, 2019, 9, 846.	4.0	60
9	Impact of currently used anti-diabetic drugs on myoendothelial communication. Current Opinion in Pharmacology, 2019, 45, 1-7.	3.5	8
10	Hyperglycaemic impairment of PAR2-mediated vasodilation: Prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vascular Pharmacology, 2018, 109, 56-71.	2.1	84
11	Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death. Biochemical Pharmacology, 2017, 132, 118-132.	4.4	34
12	Molecular Interplay between microRNA-34a and Sirtuin1 in Hyperglycemia-Mediated Impaired Angiogenesis in Endothelial Cells: Effects of Metformin. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 314-323.	2.5	78
13	MicroRNA Signature and Cardiovascular Dysfunction. Journal of Cardiovascular Pharmacology, 2015, 65, 419-429.	1.9	31
14	Metformin: An Old Drug for the Treatment of Diabetes but a New Drug for the Protection of the Endothelium. Medical Principles and Practice, 2015, 24, 401-415.	2.4	1,060
15	Metformin improves endothelial function in aortic tissue and microvascular endothelial cells subjected to diabetic hyperglycaemic conditions. Biochemical Pharmacology, 2015, 98, 412-421.	4.4	40
16	Cardiovascular impact of drugs used in the treatment of diabetes. Therapeutic Advances in Chronic Disease, 2014, 5, 245-268.	2. 5	54
17	Metformin modulates hyperglycaemiaâ€induced endothelial senescence and apoptosis through <scp>SIRT1</scp> . British Journal of Pharmacology, 2014, 171, 523-535.	5.4	193
18	FGF21 Maintains Glucose Homeostasis by Mediating the Cross Talk Between Liver and Brain During Prolonged Fasting. Diabetes, 2014, 63, 4064-4075.	0.6	217

#	Article	IF	CITATIONS
19	Peroxynitrite Biology. , 2014, , 207-242.		6
20	Endothelial Dysfunction in Diabetes Mellitus: Possible Involvement of Endoplasmic Reticulum Stress?. Experimental Diabetes Research, 2012, 2012, 1-14.	3.8	98
21	The endothelium: influencing vascular smooth muscle in many ways. Canadian Journal of Physiology and Pharmacology, 2012, 90, 713-738.	1.4	188
22	The endothelium in compliance and resistance vessels. Frontiers in Bioscience - Scholar, 2011, S3, 730-744.	2.1	25
23	Endothelial dysfunction in diabetes: multiple targets for treatment. Pflugers Archiv European Journal of Physiology, 2010, 459, 977-994.	2.8	89
24	A review of endothelial dysfunction in diabetes: a focus on the contribution of a dysfunctional eNOS. Journal of the American Society of Hypertension, 2010, 4, 102-115.	2.3	84
25	A role for nitroxyl (HNO) as an endotheliumâ€derived relaxing and hyperpolarizing factor in resistance arteries. British Journal of Pharmacology, 2009, 157, 540-550.	5.4	110
26	Effects of a Western diet versus high glucose on endothelium-dependent relaxation in murine microand macro-vasculature. European Journal of Pharmacology, 2008, 601, 111-117.	3.5	31
27	Vascular dysfunction in type 2 diabetic TallyHo mice: role for an increase in the contribution of PGH2/TxA2 receptor activation and cytochrome p450 productsThis paper is one of a selection of papers published in this Special Issue, entitled The Cellular and Molecular Basis of Cardiovascular Dysfunction, Dhalla 70th Birthday Tribute Canadian Journal of Physiology and Pharmacology, 2007,	1.4	23
28	Oxidative stress and increased eNOS and NADPH oxidase expression in mouse microvessel endothelial cells. Journal of Cellular Physiology, 2007, 212, 682-689.	4.1	89
29	Nitrosothiol stores in vascular tissue: Modulation by ultraviolet light, acetylcholine and ionomycin. European Journal of Pharmacology, 2007, 560, 183-192.	3.5	24
30	Pharmacological characteristics of endothelium-derived hyperpolarizing factor-mediated relaxation of small mesenteric arteries from db/db mice. European Journal of Pharmacology, 2006, 551, 98-107.	3.5	48
31	A Nonthiazolidinedione Peroxisome Proliferator-Activated Receptor \hat{I}^3 Agonist Reverses Endothelial Dysfunction in Diabetic (db/db-/-) Mice. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 364-370.	2.5	9
32	Enhanced vascular reactivity of small mesenteric arteries from diabetic mice is associated with enhanced oxidative stress and cyclooxygenase products. British Journal of Pharmacology, 2005, 144, 953-960.	5.4	84
33	Twenty-five years since the discovery of endothelium-derived relaxing factor (EDRF): does a dysfunctional endothelium contribute to the development of type 2 diabetes?. Canadian Journal of Physiology and Pharmacology, 2005, 83, 681-700.	1.4	26
34	Endothelial dysfunction in Type 2 diabetes correlates with deregulated expression of the tail-anchored membrane protein SLMAP. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H206-H211.	3.2	20
35	The vascular endothelium in diabetes: a practical target fordrug treatment?. Expert Opinion on Therapeutic Targets, 2005, 9, 101-117.	3.4	20
36	Endothelial cell dysfunction and the vascular complications associated with type 2 diabetes: assessing the health of the endothelium. Vascular Health and Risk Management, 2005, 1 , 55-71.	2.3	95

#	Article	IF	Citations
37	2-Furoyl-LIGRLO-amide: A Potent and Selective Proteinase-Activated Receptor 2 Agonist. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 1124-1131.	2.5	128
38	The endothelium in health and disease: A discussion of the contribution of non-nitric oxide endothelium-derived vasoactive mediators to vascular homeostasis in normal vessels and in type II diabetes. Molecular and Cellular Biochemistry, 2004, 263, 21-27.	3.1	27
39	Hyperpolarization of murine small caliber mesenteric arteries by activation of endothelial proteinase-activated receptor 2. Canadian Journal of Physiology and Pharmacology, 2004, 82, 1103-1112.	1.4	35
40	Endothelium-Derived Hyperpolarizing Factor(s). Does it Exist and What Role Does it Play in the Regulation of Blood Flow?. Progress in Experimental Cardiology, 2004, , 341-348.	0.0	0
41	Endothelial cell dysfunction in type I and II diabetes: The cellular basis for dysfunction. Drug Development Research, 2003, 58, 28-41.	2.9	11
42	Searching for the physiological role and therapeutic potential of vascular proteinase-activated receptor-2 (PAR2). Drug Development Research, 2003, 60, 14-19.	2.9	2
43	A photosensitive vascular smooth muscle store of nitric oxide in mouse aorta: no dependence on expression of endothelial nitric oxide synthase. British Journal of Pharmacology, 2003, 138, 932-940.	5.4	28
44	Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress in small mesenteric arteries from diabetic (db/db) mice. British Journal of Pharmacology, 2003, 140, 701-706.	5.4	86
45	Catalase has negligible inhibitory effects on endothelium-dependent relaxations in mouse isolated aorta and small mesenteric artery. British Journal of Pharmacology, 2003, 140, 1193-1200.	5.4	63
46	Endothelium-derived reactive oxygen species: their relationship to endothelium-dependent hyperpolarization and vascular tone. Canadian Journal of Physiology and Pharmacology, 2003, 81, 1013-1028.	1.4	76
47	The Endothelium in Health and Disease-A Target for Therapeutic Intervention Journal of Smooth Muscle Research, 2003, 39, 249-267.	1.2	90
48	Proteinase-Activated Receptor-2 (PAR2): Vascular Effects of a PAR2-Derived Activating Peptide via a Receptor Different than PAR2. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 985-992.	2.5	36
49	Endotheliumâ€Derived Hyperpolarizing Factor: Is There A Novel Chemical Mediator?. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 153-160.	1.9	42
50	Multiple mechanisms of vascular smooth muscle relaxation by the activation of Proteinase-Activated Receptor 2 in mouse mesenteric arterioles. British Journal of Pharmacology, 2002, 135, 155-169.	5.4	76
51	Cellular basis of endothelial dysfunction in small mesenteric arteries from spontaneously diabetic $(xi>db/dba^*/a^*)$ mice: role of decreased tetrahydrobiopterin bioavailability. British Journal of Pharmacology, 2002, 136, 255-263.	5.4	164
52	NO and the vasculature: where does it come from and what does it do?. Heart Failure Reviews, 2002, 7, 423-445.	3.9	26
53	Endothelium-derived relaxing factors: A focus on endothelium-derived hyperpolarizing factor(s). Canadian Journal of Physiology and Pharmacology, 2001, 79, 443-470.	1.4	146
54	Novel endothelium-derived relaxing factors. Journal of Pharmacological and Toxicological Methods, 2000, 44, 441-452.	0.7	22

#	Article	IF	CITATIONS
55	Desensitization of a-Adrenoceptor Mediated Responses in Vascular Smooth Muscle. , 1996, , 119-138.		O
56	Role of NO in vascular smooth muscle and cardiac muscle function. Trends in Pharmacological Sciences, 1994, 15, 255-259.	8.7	90