
Loreta Medina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1114165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolving Views on the Pallium. Brain, Behavior and Evolution, 2022, 96, 181-199.	0.9	19
2	Refocusing neuroscience: moving away from mental categories and towards complex behaviours. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200534.	1.8	40
3	Precise Mapping of Otp Expressing Cells Across Different Pallial Regions Throughout Ontogenesis Using Otp-Specific Reporter Transgenic Mice. Frontiers in Neural Circuits, 2022, 16, 831074.	1.4	2
4	Distinct Subdivisions in the Transition Between Telencephalon and Hypothalamus Produce Otp and Sim1 Cells for the Extended Amygdala in Sauropsids. Frontiers in Neuroanatomy, 2022, 16, .	0.9	13
5	Developmental-Based Classification of Enkephalin and Somatostatin Containing Neurons of the Chicken Central Extended Amygdala. Frontiers in Physiology, 2022, 13, .	1.3	6
6	A novel telencephalonâ€optoâ€hypothalamic morphogenetic domain coexpressing Foxg1 and Otp produces most of the glutamatergic neurons of the medial extended amygdala. Journal of Comparative Neurology, 2021, 529, 2418-2449.	0.9	24
7	Evolution of Pallial Areas and Networks Involved in Sociality: Comparison Between Mammals and Sauropsids. Frontiers in Physiology, 2019, 10, 894.	1.3	26
8	Neural architecture of the vertebrate brain: implications for the interaction between emotion and cognition. Neuroscience and Biobehavioral Reviews, 2019, 107, 296-312.	2.9	55
9	Expression of regulatory genes in the embryonic brain of a lizard and implications for understanding pallial organization and evolution. Journal of Comparative Neurology, 2018, 526, 166-202.	0.9	55
10	A 3D MRIâ€based atlas of a lizard brain. Journal of Comparative Neurology, 2018, 526, 2511-2547.	0.9	22
11	Genoarchitecture of the extended amygdala in zebra finch, and expression of FoxP2 in cell corridors of different genetic profile. Brain Structure and Function, 2017, 222, 481-514.	1.2	36
12	Contribution of Genoarchitecture to Understanding Hippocampal Evolution and Development. Brain, Behavior and Evolution, 2017, 90, 25-40.	0.9	41
13	Radial derivatives of the mouse ventral pallium traced with Dbx1-LacZ reporters. Journal of Chemical Neuroanatomy, 2016, 75, 2-19.	1.0	47
14	Embryonic Origin of the Islet1 and Pax6 Neurons of the Chicken Central Extended Amygdala Using Cell Migration Assays and Relation to Different Neuropeptide-Containing Cells. Brain, Behavior and Evolution, 2015, 85, 139-169.	0.9	21
15	Combinatorial expression of Lef1, Lhx2, Lhx5, Lhx9, Lmo3, Lmo4, and Prox1 helps to identify comparable subdivisions in the developing hippocampal formation of mouse and chicken. Frontiers in Neuroanatomy, 2014, 8, 59.	0.9	88
16	Genetic identification of the central nucleus and other components of the central extended amygdala in chicken during development. Frontiers in Neuroanatomy, 2014, 8, 90.	0.9	33
17	Evolutionary and Developmental Contributions for Understanding the Organization of the Basal Ganglia. Brain, Behavior and Evolution, 2014, 83, 112-125.	0.9	27
18	Dynamic expression of tyrosine hydroxylase mRNA and protein in neurons of the striatum and amygdala of mice, and experimental evidence of their multiple embryonic origin. Brain Structure and Function, 2014, 219, 751-776.	1.2	23

Loreta Medina

#	Article	IF	CITATIONS
19	The Olfactory Amygdala in Amniotes: An Evoâ€Devo Approach. Anatomical Record, 2013, 296, 1317-1332.	0.8	44
20	A Never-Ending Search for the Evolutionary Origin of the Neocortex: Rethinking the Homology Concept. Brain, Behavior and Evolution, 2013, 81, 150-153.	0.9	31
21	<i>β</i> -Catenin Signalling in Glioblastoma Multiforme and Glioma-Initiating Cells. Chemotherapy Research and Practice, 2012, 2012, 1-7.	1.6	70
22	Cadherin expression delineates the divisions of the postnatal and adult mouse amygdala. Journal of Comparative Neurology, 2012, 520, 3982-4012.	0.9	37
23	Subpallial Structures. , 2012, , 173-220.		36
24	The avian subpallium: New insights into structural and functional subdivisions occupying the lateral subpallial wall and their embryological origins. Brain Research, 2011, 1424, 67-101.	1.1	77
25	Multiple telencephalic and extratelencephalic embryonic domains contribute neurons to the medial extended amygdala. Journal of Comparative Neurology, 2011, 519, 1505-1525.	0.9	81
26	Genetic and experimental evidence supports the continuum of the central extended amygdala and a mutiple embryonic origin of its principal neurons. Journal of Comparative Neurology, 2011, 519, 3507-3531.	0.9	69
27	Contribution of Genoarchitecture to Understanding Forebrain Evolution and Development, with Particular Emphasis on the Amygdala. Brain, Behavior and Evolution, 2011, 78, 216-236.	0.9	92
28	Similarities and differences in the forebrain expression of <i>Lhx1</i> and <i>Lhx5</i> between chicken and mouse: Insights for understanding telencephalic development and evolution. Journal of Comparative Neurology, 2010, 518, 3512-3528.	0.9	70
29	Differential Expression of LIM-Homeodomain Factors in Cajal-Retzius Cells of Primates, Rodents, and Birds. Cerebral Cortex, 2010, 20, 1788-1798.	1.6	51
30	Subdivisions and derivatives of the chicken subpallium based on expression of LIM and other regulatory genes and markers of neuron subpopulations during development. Journal of Comparative Neurology, 2009, 515, 465-501.	0.9	102
31	Olfactory and amygdalar structures of the chicken ventral pallium based on the combinatorial expression patterns of LIM and other developmental regulatory genes. Journal of Comparative Neurology, 2009, 516, 166-186.	0.9	64
32	Development and evolution of the pallium. Seminars in Cell and Developmental Biology, 2009, 20, 698-711.	2.3	127
33	Evolution and Embryological Development of Forebrain. , 2009, , 1172-1192.		6
34	Histogenetic compartments of the mouse centromedial and extended amygdala based on gene expression patterns during development. Journal of Comparative Neurology, 2008, 506, 46-74.	0.9	180
35	Comparative functional analysis provides evidence for a crucial role for the homeobox gene <i>Nkx2.1</i> / <i>Titfâ€l</i> in forebrain evolution. Journal of Comparative Neurology, 2008, 506, 211-223.	0.9	44

LORETA MEDINA

#	Article	IF	CITATIONS
37	Dynamic patterns of colocalization of calbindin, parvalbumin and GABA in subpopulations of mouse basolateral amygdalar cells during development. Journal of Chemical Neuroanatomy, 2008, 35, 67-76.	1.0	30
38	Expression of cLhx6 and cLhx7/8 suggests a pallido-pedunculo-preoptic origin for the lateral and medial parts of the avian bed nucleus of the stria terminalis. Brain Research Bulletin, 2008, 75, 299-304.	1.4	29
39	Calcium-binding proteins, neuronal nitric oxide synthase, and GABA help to distinguish different pallial areas in the developing and adult chicken. I. Hippocampal formation and hyperpallium. Journal of Comparative Neurology, 2006, 497, 751-771.	0.9	51
40	Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience, 2005, 6, 151-159.	4.9	930
41	Embryonic and postnatal development of GABA, calbindin, calretinin, and parvalbumin in the mouse claustral complex. Journal of Comparative Neurology, 2005, 481, 42-57.	0.9	41
42	Development of neurons and fibers containing calcium binding proteins in the pallial amygdala of mouse, with special emphasis on those of the basolateral amygdalar complex. Journal of Comparative Neurology, 2005, 488, 492-513.	0.9	42
43	Expression patterns of developmental regulatory genes show comparable divisions in the telencephalon of Xenopus and mouse: insights into the evolution of the forebrain. Brain Research Bulletin, 2005, 66, 297-302.	1.4	36
44	Introduction to the Proceedings of the Fourth European Conference on Comparative Neurobiology: Evolution and Development of Nervous Systems. Brain Research Bulletin, 2005, 66, 269.	1.4	0
45	Distribution of nitric oxide-producing neurons in the developing and adult mouse amygdalar basolateral complex. Brain Research Bulletin, 2005, 66, 465-469.	1.4	20
46	Subpallial origin of part of the calbindin-positive neurons of the claustral complex and piriform cortex. Brain Research Bulletin, 2005, 66, 470-474.	1.4	22
47	Revised nomenclature for avian telencephalon and some related brainstem nuclei. Journal of Comparative Neurology, 2004, 473, 377-414.	0.9	1,054
48	Expression ofDbx1,Neurogenin 2,Semaphorin 5A,Cadherin 8, andEmx1distinguish ventral and lateral pallial histogenetic divisions in the developing mouse claustroamygdaloid complex. Journal of Comparative Neurology, 2004, 474, 504-523.	0.9	221
49	Expression of the genesEmx1,Tbr1, andEomes (Tbr2) in the telencephalon ofXenopus laevis confirms the existence of a ventral pallial division in all tetrapods. Journal of Comparative Neurology, 2004, 474, 562-577.	0.9	145
50	The Avian Brain Nomenclature Forum: Terminology for a New Century in Comparative Neuroanatomy. Journal of Comparative Neurology, 2004, 473, E1-E6.	0.9	37
51	Expression of the genesGAD67 andDistal-less-4 in the forebrain ofXenopus laevis confirms a common pattern in tetrapods. Journal of Comparative Neurology, 2003, 461, 370-393.	0.9	150
52	Histogenetic divisions, developmental mechanisms, and cortical evolution. Behavioral and Brain Sciences, 2003, 26, 563-564.	0.4	1
53	Patch/matrix patterns of gray matter differentiation in the telencephalon of chicken and mouse. Brain Research Bulletin, 2002, 57, 489-493.	1.4	20
54	Field homology as a way to reconcile genetic and developmental variability with adult homology. Brain Research Bulletin, 2002, 57, 243-255.	1.4	125

LORETA MEDINA

#	Article	IF	CITATIONS
55	The telencephalon of the frog Xenopus based on calretinin immunostaining and gene expression patterns. Brain Research Bulletin, 2002, 57, 381-384.	1.4	30
56	Organization of the mouse dorsal thalamus based on topology, calretinin immnunostaining, and gene expression. Brain Research Bulletin, 2002, 57, 439-442.	1.4	66
57	Cadherin expression by embryonic divisions and derived gray matter structures in the telencephalon of the chicken. Journal of Comparative Neurology, 2001, 438, 253-285.	0.9	100
58	Light and electron microscopic evidence for projections from the thalamic nucleus rotundus to targets in the basal ganglia, the dorsal ventricular ridge, and the amygdaloid complex in a lizard. Journal of Comparative Neurology, 2000, 424, 216-232.	0.9	71
59	Pathway tracing using biotinylated dextran amines. Journal of Neuroscience Methods, 2000, 103, 23-37.	1.3	308
60	Identification of the Anterior Nucleus of the Ansa Lenticularis in Birds as the Homolog of the Mammalian Subthalamic Nucleus. Journal of Neuroscience, 2000, 20, 6998-7010.	1.7	97
61	Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices?. Trends in Neurosciences, 2000, 23, 1-12.	4.2	376
62	Immunohistochemical Localization of NMDA- and AMPA-Type Glutamate Receptor Subunits in the Basal Ganglia of Red-Eared Turtles. Brain, Behavior and Evolution, 1999, 54, 276-289.	0.9	22
63	Nucleus accumbens in the lizardPsammodromus algirus: chemoarchitecture and cortical afferent connections. , 1999, 405, 15-31.		27
64	Structural and functional evolution of the basal ganglia in vertebrates. Brain Research Reviews, 1998, 28, 235-285.	9.1	351
65	Immunohistochemical localization of DARPP32 in striatal projection neurons and striatal interneurons in pigeons. Journal of Chemical Neuroanatomy, 1998, 16, 17-33.	1.0	55
66	Avian Homologues of Mammalian Intralaminar, Mediodorsal and Midline Thalamic Nuclei: Immunohistochemical and Hodological Evidence. Brain, Behavior and Evolution, 1997, 49, 78-98.	0.9	85
67	Evidence for a possible avian dorsal thalamic region comparable to the mammalian ventral anterior, ventral lateral, and oral ventroposterolateral nuclei. , 1997, 384, 86-108.		69
68	Differential Abundance of Glutamate Transporter Subtypes in Amyotrophic Lateral Sclerosis (ALS)-Vulnerable versus ALS-Resistant Brain Stem Motor Cell Groups. Experimental Neurology, 1996, 142, 287-295.	2.0	38
69	Differential abundance of superoxide dismutase in interneurons versus projection neurons and in matrix versus striosome neurons in monkey striatum. Brain Research, 1996, 708, 59-70.	1.1	50
70	Calretinin is largely localized to a unique population of striatal interneurons in rats. Brain Research, 1996, 709, 145-150.	1.1	52
71	Light and electron microscopic immunohistochemical study of dopaminergic terminals in the striatal portion of the pigeon basal ganglia using antisera against tyrosine hydroxylase and dopamine. , 1996, 369, 109-124.		26
72	Brainstem Motoneuron Cell Groups that die in Amyotrophic Lateral Sclerosis are Rich in the GLT-1 Glutamate Transporter. , 1996, , 69-76.		1

LORETA MEDINA

#	Article	IF	CITATIONS
73	An ultrastructural double-label immunohistochemical study of the enkephalinergic input to dopaminergic neurons of the substantia nigra in pigeons. Journal of Comparative Neurology, 1995, 357, 408-432.	0.9	18
74	The efferent connections of the nucleus accumbens in the lizard Gekko gecko. Anatomy and Embryology, 1995, 191, 73-81.	1.5	35
75	Neurotransmitter Organization and Connectivity of the Basal Ganglia in Vertebrates: Implications for the Evolution of Basal Ganglia (Part 1 of 2). Brain, Behavior and Evolution, 1995, 46, 235-246.	0.9	139
76	Brainstem motoneuron pools that are selectively resistant in amyotrophic lateral sclerosis are preferentially enriched in parvalbumin: Evidence from monkey brainstem for a calcium-mediated mechanism in sporadic ALS. Experimental Neurology, 1995, 131, 239-250.	2.0	105
77	Distribution of choline acetyltransferase immunoreactivity in the pigeon brain. Journal of Comparative Neurology, 1994, 342, 497-537.	0.9	195
78	Development of catecholamine systems in the brain of the lizard Gallotia galloti. Journal of Comparative Neurology, 1994, 350, 41-62.	0.9	51
79	Distribution of choline acetyltransferase immunoreactivity in the brain of the lizardGallotia galloti. Journal of Comparative Neurology, 1993, 331, 261-285.	0.9	113
80	Cholinergic, Monoaminergic and Peptidergic Innervation of the Primary Visual Centers in the Brain of the Lizards <i>Gekko gecko</i> and <i>Gallotia galloti</i> . Brain, Behavior and Evolution, 1992, 40, 157-181.	0.9	38
81	Distribution of neuropeptide Y-like immunoreactivity in the brain of the lizardGallotia galloti. Journal of Comparative Neurology, 1992, 319, 387-405.	0.9	62
82	Comparative aspects of the basal ganglia-tectal pathways in reptiles. Journal of Comparative Neurology, 1991, 308, 614-629.	0.9	56
83	Neuronal typology of the thalamic area triangularis ofGallotia galloti (reptilia, sauria). Journal of Morphology, 1990, 205, 113-121.	0.6	4
84	Neuronal differentiation in the thalamic area triangularis of a lizard. Journal of Morphology, 1990, 205, 123-134.	0.6	2