E Murat Sozer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1114043/publications.pdf

Version: 2024-02-01

516710 477307 1,025 29 16 29 h-index citations g-index papers 30 30 30 578 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Monitoring and modeling of part thickness evolution in vacuum infusion process. Journal of Composite Materials, 2021, 55, 1053-1072.	2.4	6
2	Comparison of in-plane resin transfer molding and vacuum-assisted resin transfer molding â€~effective' permeabilities based on mold filling experiments and simulations. Journal of Reinforced Plastics and Composites, 2020, 39, 31-44.	3.1	10
3	Effect of external pressure and resin flushing on reduction of process-induced voids and enhancement of laminate quality in heated-VARTM. Composites Part A: Applied Science and Manufacturing, 2019, 121, 353-364.	7.6	18
4	In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise. Composites Part A: Applied Science and Manufacturing, 2019, 121, 100-114.	7.6	75
5	Using mid-semester course evaluation as a feedback tool for improving learning and teaching in higher education. Assessment and Evaluation in Higher Education, 2019, 44, 1003-1016.	5 . 6	18
6	Dynamic pressure control in VARTM: Rapid fabrication of laminates with high fiber volume fraction and improved dimensional uniformity. Polymer Composites, 2019, 40, 2482-2494.	4.6	11
7	Pressurized Infusion: A New and Improved Liquid Composite Molding Process. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2019, 141, .	2.2	19
8	Examining graduate teaching assistants' conceptions of and readiness for effective teaching in a non-profit Turkish university. Innovations in Education and Teaching International, 2019, 56, 373-384.	2.5	2
9	In-plane permeability distribution mapping of isotropic mats using flow front detection. Composites Part A: Applied Science and Manufacturing, 2018, 113, 275-286.	7.6	20
10	Effect of permeability characterization at different boundary and flow conditions on vacuum infusion process modeling. Journal of Reinforced Plastics and Composites, 2017, 36, 491-504.	3.1	18
11	Pressure-controlled compaction characterization of fiber preforms suitable for viscoelastic modeling in the vacuum infusion process. Journal of Composite Materials, 2017, 51, 1209-1224.	2.4	13
12	Permeability of textile fabrics with spherical inclusions. Composites Part A: Applied Science and Manufacturing, 2017, 99, 1-14.	7.6	37
13	Viscoelastic modeling of fiber preform compaction in vacuum infusion process. Journal of Composite Materials, 2017, 51, 4189-4203.	2.4	9
14	Fabrication of high quality composite laminates by pressurized and heated-VARTM. Composites Part A: Applied Science and Manufacturing, 2017, 102, 336-346.	7.6	45
15	A novel mold design for one-continuous permeability measurement of fiber preforms. Journal of Reinforced Plastics and Composites, 2015, 34, 915-930.	3.1	5
16	Modeling of post-filling stage in vacuum infusion using compaction characterization. Journal of Composite Materials, 2015, 49, 1947-1960.	2.4	16
17	Effect of part thickness variation on the mold filling time in vacuum infusion process. Journal of Reinforced Plastics and Composites, 2014, 33, 2136-2150.	3.1	16
18	Compaction of e-glass fabric preforms in the vacuum infusion process: (a) use of characterization database in a model and (b) experiments. Journal of Composite Materials, 2013, 47, 1959-1975.	2.4	19

#	Article	IF	CITATIONS
19	Minimizing Thickness Variation in the Vacuum Infusion (VI) Process. Advanced Composites Letters, 2011, 20, 096369351102000.	1.3	7
20	Variation of part thickness and compaction pressure in vacuum infusion process. Composites Science and Technology, 2009, 69, 1710-1719.	7.8	109
21	A grid of dielectric sensors to monitor mold filling and resin cure in resin transfer molding. Composites Part A: Applied Science and Manufacturing, 2009, 40, 476-489.	7.6	70
22	Compaction of e-glass fabric preforms in the Vacuum Infusion Process, A: Characterization experiments. Composites Part A: Applied Science and Manufacturing, 2009, 40, 499-510.	7.6	38
23	Constraints on monitoring resin flow in the resin transfer molding (RTM) process by using thermocouple sensors. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1363-1386.	7.6	74
24	Monitoring of resin flow in the resin transfer molding (RTM) process using point-voltage sensors. Composites Science and Technology, 2007, 67, 367-379.	7.8	72
25	An approach to couple mold design and on-line control to manufacture complex composite parts by resin transfer molding. Composites Part A: Applied Science and Manufacturing, 2002, 33, 981-990.	7.6	76
26	On-line strategic control of liquid composite mould filling process. Composites Part A: Applied Science and Manufacturing, 2000, 31, 1383-1394.	7.6	57
27	Fabric structure and mold curvature effects on preform permeability and mold filling in the RTM process. Part I. Experiments. Composites Part A: Applied Science and Manufacturing, 2000, 31, 423-438.	7.6	61
28	Fabric structure and mold curvature effects on preform permeability and mold filling in the RTM process. Part II. Predictions and comparisons with experiments. Composites Part A: Applied Science and Manufacturing, 2000, 31, 439-458.	7.6	50
29	Fluid Impregnation of Deformed Preforms. Journal of Reinforced Plastics and Composites, 2000, 19, 552-568.	3.1	12