

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11140013/publications.pdf Version: 2024-02-01

ZICANC GE

#	Article	IF	CITATIONS
1	Key considerations on the development of biodegradable biomaterials for clinical translation of medical devices: With cartilage repair products as an example. Bioactive Materials, 2022, 9, 332-342.	8.6	27
2	Nanosecond pulsed electric fields prime mesenchymal stem cells to peptide ghrelin and enhance chondrogenesis and osteochondral defect repair in vivo. Science China Life Sciences, 2022, 65, 927-939.	2.3	7
3	Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration. Bioactive Materials, 2021, 6, 1689-1698.	8.6	107
4	Can Upregulation of Pluripotency Genes Enhance Stemness of Mesenchymal Stem Cells?. Stem Cell Reviews and Reports, 2021, 17, 1505-1507.	1.7	3
5	Multiple nanosecond pulsed electric fields stimulation with conductive poly(<scp>l</scp> â€lactic) Tj ETQq1 1 prolonged in vitro culture. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1136-1148.	0.784314 1.3	rgBT /Overlo 6
6	Nanosecond pulsed electric fields enhanced chondrogenic potential of mesenchymal stem cells via JNK/CREB-STAT3 signaling pathway. Stem Cell Research and Therapy, 2019, 10, 45.	2.4	26
7	Enhancement of the chondrogenic differentiation of mesenchymal stem cells and cartilage repair by ghrelin. Journal of Orthopaedic Research, 2019, 37, 1387-1397.	1.2	18
8	TGF-β1 affinity peptides incorporated within a chitosan sponge scaffold can significantly enhance cartilage regeneration. Journal of Materials Chemistry B, 2018, 6, 675-687.	2.9	28
9	Physically entrapped gelatin in polyethylene glycol scaffolds for three-dimensional chondrocyte culture. Journal of Bioactive and Compatible Polymers, 2016, 31, 513-530.	0.8	6
10	Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration. Biomedical Materials (Bristol), 2016, 11, 035014.	1.7	20
11	Perspectives on Animal Models Utilized for the Research and Development of Regenerative Therapies for Articular Cartilage. Current Molecular Biology Reports, 2016, 2, 90-100.	0.8	10
12	Cross-talk between TGF-beta/SMAD and integrin signaling pathways in regulating hypertrophy of mesenchymal stem cell chondrogenesis under deferral dynamic compression. Biomaterials, 2015, 38, 72-85.	5.7	96
13	Probing cell–matrix interactions in RGD-decorated macroporous poly (ethylene glycol) hydrogels for 3D chondrocyte culture. Biomedical Materials (Bristol), 2015, 10, 035016.	1.7	19
14	Optimization and characterization of chemically modified polymer microspheres and their effect on cell behavior. Materials Letters, 2015, 154, 68-72.	1.3	10
15	The influence of scaffold microstructure on chondrogenic differentiation of mesenchymal stem cells. Biomedical Materials (Bristol), 2014, 9, 035011.	1.7	36
16	Effects of fluctuant magnesium concentration on phenotype of the primary chondrocytes. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	13
17	Optimization of dual effects of Mg–1Ca alloys on the behavior of chondrocytes and osteoblasts in vitro. Progress in Natural Science: Materials International, 2014, 24, 433-440.	1.8	2
18	Nanosecond Pulsed Electric Fields (nsPEFs) Regulate Phenotypes of Chondrocytes through Wnt/β-catenin Signaling Pathway. Scientific Reports, 2014, 4, 5836.	1.6	32

ZIGANG GE

#	Article	IF	CITATIONS
19	Poly (l-lactide-co-caprolactone) scaffolds enhanced with poly (î²-hydroxybutyrate-co-î²-hydroxyvalerate) microspheres for cartilage regeneration. Biomedical Materials (Bristol), 2013, 8, 025005.	1.7	28
20	Cells Behave Distinctly Within Sponges and Hydrogels Due to Differences of Internal Structure. Tissue Engineering - Part A, 2013, 19, 2166-2175.	1.6	37
21	A Viscoelastic Chitosan-Modified Three-Dimensional Porous Poly(L-Lactide-co-Îμ-Caprolactone) Scaffold for Cartilage Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 405-424.	1.9	55
22	Functional biomaterials for cartilage regeneration. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2526-2536.	2.1	79
23	Improved Mesenchymal Stem Cells Attachment and <i>In Vitro</i> Cartilage Tissue Formation on Chitosan-Modified Poly(<scp> </scp> -Lactide- <i>co</i> -Epsilon-Caprolactone) Scaffold. Tissue Engineering - Part A, 2012, 18, 242-251.	1.6	79
24	A Biocompatible Chitosan Composite Containing Phosphotungstic Acid Modified Single-Walled Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 7126-7129.	0.9	10
25	Fabrication, Mechanical Properties, and Biocompatibility of Graphene-Reinforced Chitosan Composites. Biomacromolecules, 2010, 11, 2345-2351.	2.6	514
26	Proliferation and Differentiation of Human Osteoblasts within 3D printed Poly-Lactic-co-Glycolic Acid Scaffolds. Journal of Biomaterials Applications, 2009, 23, 533-547.	1.2	62
27	Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model. Biomedical Materials (Bristol), 2009, 4, 021001.	1.7	85
28	Manufacture of degradable polymeric scaffolds for bone regeneration. Biomedical Materials (Bristol), 2008, 3, 022001.	1.7	67
29	Osteoarthritis and therapy. Arthritis and Rheumatism, 2006, 55, 493-500.	6.7	98
30	Biomaterials and scaffolds for ligament tissue engineering. Journal of Biomedical Materials Research - Part A, 2006, 77A, 639-652.	2.1	123
31	The Effects of Bone Marrow-Derived Mesenchymal Stem Cells and Fascia Wrap Application to Anterior Cruciate Ligament Tissue Engineering. Cell Transplantation, 2005, 14, 763-773.	1.2	65
32	Selection of Cell Source for Ligament Tissue Engineering. Cell Transplantation, 2005, 14, 573-583.	1.2	103
33	Hydroxyapatite–chitin materials as potential tissue engineered bone substitutes. Biomaterials, 2004, 25, 1049-1058.	5.7	141