PaweÅ, SzczepaÅ,,ski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11139260/publications.pdf

Version: 2024-02-01

39	374	1040056	794594
	citations	9	19
papers	citations	h-index	g-index
39	39	39	315
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Spatial Dispersion in Hypercrystal Distributed Feedback Lasing. Materials, 2022, 15, 3482.	2.9	2
2	Strong second-harmonic response from semiconductor–dielectric interfaces. Applied Optics, 2021, 60, 1132.	1.8	1
3	Nonlocality-Enabled Magnetic Free Optical Isolation in Hyperbolic Metamaterials. Materials, 2021, 14, 2865.	2.9	4
4	Distributed Feedback Laser Based on Tunable Photonic Hypercrystal. Materials, 2021, 14, 4065.	2.9	14
5	Influence of Spatial Dispersion on Propagation Properties of Waveguides Based on Hyperbolic Metamaterial. Materials, 2021, 14, 6885.	2.9	2
6	Influence of Nonlocality on Transmittance and Reflectance of Hyperbolic Metamaterials. Crystals, 2020, 10, 577.	2.2	7
7	Guided Optical Modes in Metal-Cladded Tunable Hyperbolic Metamaterial Slab Waveguides. Crystals, 2020, 10, 176.	2.2	8
8	Effect of nonlocality in spatially uniform anisotropic metamaterials. Optics Express, 2020, 28, 15447.	3.4	11
9	Controllable intermodal coupling in waveguide systems based on tunable hyperbolic metamaterials. Optics Express, 2020, 28, 40044.	3.4	2
10	Tunable spectral and spatial filters for the mid-infrared based on hyperbolic metamaterials. Applied Optics, 2018, 57, 1182.	1.8	14
11	Multiresonance response in hyperbolic metamaterials. Applied Optics, 2018, 57, 2135.	1.8	14
12	Controllable birefringence in graphene-based anisotropic metamaterials. , 2018, , .		O
13	Control of mode propagation in tunable hyperbolic metamaterial waveguides. , 2018, , .		O
14	Tunable Hyperbolic Metamaterials for Novel Photonic Devices., 2018,,.		0
15	Control of gain/absorption in tunable hyperbolic metamaterials. Optics Express, 2017, 25, 13153.	3.4	19
16	Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands. Optics Express, 2017, 25, 7263.	3.4	41
17	Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands. Optics Express, 2016, 24, 24129.	3.4	37
18	Analysis of Mode Competition in a 2-D Square Lattice Photonic Crystal Laser With Transverse Magnetic Polarization. IEEE Journal of Quantum Electronics, 2015, 51, 1-13.	1.9	1

#	Article	IF	CITATIONS
19	AWG-Based Photonic Transmitter With DBR Mirrors and Mach–Zehnder Modulators. IEEE Photonics Technology Letters, 2014, 26, 710-713.	2.5	1
20	Threshold Mode Analysis of 2-D Square and Triangular Lattice Gain and Index Coupled Photonic Crystal Lasers. IEEE Journal of Quantum Electronics, 2014, 50, 554-562.	1.9	0
21	AWG-DBR-based WDM Transmitter fabricated in an InP Generic Foundry Platform. , 2014, , .		3
22	InP-Based Photonic Multiwavelength Transmitter With DBR Laser Array. IEEE Photonics Technology Letters, 2013, 25, 352-354.	2.5	111
23	Nonlinear Operation of a 2-D Triangular Lattice Photonic Crystal Laser. IEEE Journal of Quantum Electronics, 2011, 47, 13-19.	1.9	8
24	Nonlinear analysis of a photonic crystal laser. Journal of Modern Optics, 2011, 58, 1538-1550.	1.3	4
25	Calculation of atomic spontaneous emission rate in 1D finite photonic crystal with defects. Central European Journal of Physics, 2010, 8, 746-759.	0.3	0
26	Spatial and frequency domain effects of defects in 1D photonic crystal. Optical and Quantum Electronics, 2007, 39, 501-510.	3.3	5
27	<title>Modeling of light generation in photonic crystal lasers</title> ., 2006, , .		0
28	Relaxation oscillations in a laser with a Gaussian mirror. Applied Optics, 2002, 41, 1668.	2.1	5
29	Excess noise factor in circular grating distributed Bragg reflector lasers. Optics Communications, 2001, 199, 417-424.	2.1	2
30	Effect of excess quantum noise on output power in distributed feedback lasers. Optics Communications, 1999, 172, 241-251.	2.1	3
31	Influence of mode nonorthogonality on the correlation function of the amplitude and of the intensity fluctuation of a distributed-feedback laser. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 300.	2.1	8
32	Effect of Mode Nonorthogonality on Light Coherence In F-P and DFB Lasers. , 1996, , 509-510.		0
33	Analysis of Waveguide Ring Lasers with Nonlinear Directional Outcoupler. Journal of Modern Optics, 1995, 42, 1079-1091.	1.3	6
34	Influence of the position of the gain medium on the excess noise factor. Optics Letters, 1995, 20, 881.	3.3	7
35	Optimization of output power in hollow-waveguide lasers. Applied Optics, 1995, 34, 6099.	2.1	5
36	Excess-noise factor in partly gain coupled DFB lasers. Optics Communications, 1994, 111, 502-506.	2.1	6

#	Article	IF	CITATIONS
37	Effect of mode nonorthogonality in distributed-feedback lasers. Optics Letters, 1994, 19, 1222.	3.3	11
38	Nonlinear Operation of Lasers with a Saturable Absorber. Journal of Modern Optics, 1993, 40, 1107-1122.	1.3	2
39	Model of Gain Saturation in A Two-mirror Laser. Journal of Modern Optics, 1992, 39, 2519-2529.	1.3	10