Darryl A Boyd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1113893/publications.pdf

Version: 2024-02-01

27	933	12	23
papers	citations	h-index	g-index
27	27	27	1372
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tunable mid-wavelength infrared (MWIR) polarizer by ORMOCHALC composite with improved thermomechanical stability. , 2021, , .		1
2	Safer and Greener Polymer Demonstrations for STEM Outreach. ACS Polymers Au, 2021, 1, 67-75.	4.1	6
3	Novel computational design of high refractive index nanocomposites and effective refractive index tuning based on nanoparticle morphology effect. Composites Part B: Engineering, 2021, 223, 109128.	12.0	4
4	Enhanced mid-wavelength infrared refractive index of organically modified chalcogenide (ORMOCHALC) polymer nanocomposites with thermomechanical stability. Optical Materials, 2020, 108, 110197.	3.6	12
5	Design of High Efficient Midâ€Wavelength Infrared Polarizer on ORMOCHALC Polymer. Macromolecular Materials and Engineering, 2020, 305, 2000033.	3.6	8
6	Optical Properties of a Sulfur-Rich Organically Modified Chalcogenide Polymer Synthesized via Inverse Vulcanization and Containing an Organometallic Comonomer. ACS Macro Letters, 2019, 8, 113-116.	4.8	75
7	Fabrication of high refractive index, infrared transmitting Organically Modified Chalcogenide (ORMOCHALC) polymers (Rising Researcher Presentation). , 2019, , .		O
8	Fabrication of Photoluminescent Quantum Dot Thiol–yne Nanocomposites via Thermal Curing or Photopolymerization. ACS Omega, 2018, 3, 3314-3320.	3.5	10
9	Optical Properties of Photopolymerized Thiol–Ene Polymers Fabricated Using Various Multivinyl Monomers. Industrial & Engineering Chemistry Research, 2018, 57, 8902-8906.	3.7	11
10	Superhydrophobic, infrared transmissive moth eye-like substrates for use in wet conditions., 2017,,.		1
11	Periodically patterned germanium surfaces modified to form superhydrophobic, IR-transmissive substrates. Optical Materials Express, 2016, 6, 3254.	3.0	10
12	Modification of nanostructured fused silica for use as superhydrophobic, IR-transmissive, anti-reflective surfaces. Optical Materials, 2016, 54, 195-199.	3.6	18
13	Schwefel in der modernen Materialwissenschaft. Angewandte Chemie, 2016, 128, 15712-15729.	2.0	43
14	Sulfur and Its Role In Modern Materials Science. Angewandte Chemie - International Edition, 2016, 55, 15486-15502.	13.8	332
15	Microfluidics: Microfluidic Strategies for Design and Assembly of Microfibers and Nanofibers with Tissue Engineering and Regenerative Medicine Applications (Adv. Healthcare Mater. 1/2015). Advanced Healthcare Materials, 2015, 4, 2-2.	7.6	5
16	3D hydrodynamic focusing microfluidics for emerging sensing technologies. Biosensors and Bioelectronics, 2015, 67, 25-34.	10.1	57
17	Microfluidic Strategies for Design and Assembly of Microfibers and Nanofibers with Tissue Engineering and Regenerative Medicine Applications. Advanced Healthcare Materials, 2015, 4, 11-28.	7.6	137
18	Electron Transport through Early Exponentialâ€Phase Anodeâ€Grown <i>Geobacter sulfurreducens</i> Biofilms. ChemElectroChem, 2014, 1, 1957-1965.	3.4	17

#	ARTICLE	IF	CITATIONS
19	Small-Molecule Detection in Thiol–Yne Nanocomposites via Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2014, 86, 12315-12320.	6.5	13
20	Facile Fabrication of Color Tunable Film and Fiber Nanocomposites via Thiol Click Chemistry. Macromolecules, 2014, 47, 695-704.	4.8	23
21	Microfluidic Fabrication of Polymeric and Biohybrid Fibers with Predesigned Size and Shape. Journal of Visualized Experiments, 2014, , e50958.	0.3	8
22	Design and fabrication of uniquely shaped thiol–ene microfibers using a two-stage hydrodynamic focusing design. Lab on A Chip, 2013, 13, 3105.	6.0	42
23	Hydrodynamic Shaping, Polymerization, and Subsequent Modification of Thiol Click Fibers. ACS Applied Materials & Samp; Interfaces, 2013, 5, 114-119.	8.0	37
24	New diruthenium complexes formed via modification with $1,1\hat{a}\in^2$ -ferrocene dicarboxylic acid. Inorganica Chimica Acta, 2011, 370, 198-202.	2.4	14
25	Diruthenium Compounds Bearing Equatorial Fc-containing Ligands: Synthesis and Electronic Structure. Inorganic Chemistry, 2010, 49, 11525-11531.	4.0	29
26	Fc-Fc Electronic Interaction through Equatorial Pathways of a Diruthenium Core. Inorganic Chemistry, 2010, 49, 1322-1324.	4.0	20
27	The Importance of Mentorship and Science Outreach to the Next Generation. ACS Symposium Series, 0, , 53-65.	0.5	0