
## Ugljesa Djuric

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11137808/publications.pdf Version: 2024-02-01



HOUESA DUIRIO

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The promise of organoids for unraveling the proteomic landscape of the developing human brain.<br>Molecular Psychiatry, 2022, 27, 73-80.                                             | 7.9  | 7         |
| 2  | Integrating morphologic and molecular histopathological features through whole slide image registration and deep learning. Neuro-Oncology Advances, 2022, 4, vdac001.                | 0.7  | 3         |
| 3  | Topographic mapping of the glioblastoma proteome reveals a triple-axis model of intra-tumoral heterogeneity. Nature Communications, 2022, 13, 116.                                   | 12.8 | 37        |
| 4  | Regionally defined proteomic profiles of human cerebral tissue and organoids reveal conserved molecular modules of neurodevelopment. Cell Reports, 2022, 39, 110846.                 | 6.4  | 7         |
| 5  | Unifying models of glioblastoma's intratumoral heterogeneity. Neuro-Oncology Advances, 2020, 2,<br>vdaa096.                                                                          | 0.7  | 12        |
| 6  | Unsupervised Resolution of Histomorphologic Heterogeneity in Renal Cell Carcinoma Using a Brain<br>Tumor–Educated Neural Network. JCO Clinical Cancer Informatics, 2020, 4, 811-821. | 2.1  | 19        |
| 7  | Unsupervised Machine Learning in Pathology. Surgical Pathology Clinics, 2020, 13, 349-358.                                                                                           | 1.7  | 29        |
| 8  | Can gliomas provide insights into promoting synaptogenesis?. Molecular Psychiatry, 2020, 25,<br>1920-1925.                                                                           | 7.9  | 0         |
| 9  | Shifts in Ribosome Engagement Impact Key Gene Sets in Neurodevelopment and Ubiquitination in Rett<br>Syndrome. Cell Reports, 2020, 30, 4179-4196.e11.                                | 6.4  | 46        |
| 10 | Intelligent feature engineering and ontological mapping of brain tumour histomorphologies by deep<br>learning. Nature Machine Intelligence, 2019, 1, 316-321.                        | 16.0 | 31        |
| 11 | Defining Protein Pattern Differences Among Molecular Subtypes of Diffuse Gliomas Using Mass<br>Spectrometry*[S]. Molecular and Cellular Proteomics, 2019, 18, 2029-2043.             | 3.8  | 19        |
| 12 | Proteomic analysis of meningiomas reveals clinically distinct molecular patterns. Neuro-Oncology, 2019, 21, 1028-1038.                                                               | 1.2  | 42        |
| 13 | Physician perspectives on integration of artificial intelligence into diagnostic pathology. Npj Digital<br>Medicine, 2019, 2, 28.                                                    | 10.9 | 148       |
| 14 | Deep learning for image analysis: Personalizing medicine closer to the point of care. Critical Reviews<br>in Clinical Laboratory Sciences, 2019, 56, 61-73.                          | 6.1  | 35        |
| 15 | Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction. BMC Bioinformatics, 2018, 19, 173.            | 2.6  | 45        |
| 16 | Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care. Npj Precision Oncology, 2017, 1, 22.                                    | 5.4  | 127       |
| 17 | Spatiotemporal Proteomic Profiling of Human Cerebral Development. Molecular and Cellular Proteomics, 2017, 16, 1548-1562.                                                            | 3.8  | 45        |
| 18 | The pluripotency factor <i>Nanog</i> regulates pericentromeric heterochromatin organization in mouse embryonic stem cells. Genes and Development, 2016, 30, 1101-1115.               | 5.9  | 50        |

Ugljesa Djuric

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPS cells. Neurobiology of Disease, 2015, 76, 37-45.                                                                                     | 4.4  | 84        |
| 20 | Constitutive heterochromatin reorganization during somatic cell reprogramming. EMBO Journal, 2011, 30, 1778-1789.                                                                                                                             | 7.8  | 134       |
| 21 | NLRP7, a Nucleotide Oligomerization Domain-like Receptor Protein, Is Required for Normal Cytokine<br>Secretion and Co-localizes with Golgi and the Microtubule-organizing Center. Journal of Biological<br>Chemistry, 2011, 286, 43313-43323. | 3.4  | 60        |
| 22 | Epigenetics of induced pluripotency, the seven-headed dragon. Stem Cell Research and Therapy, 2010, 1,<br>3.                                                                                                                                  | 5.5  | 24        |
| 23 | Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nature Genetics, 2006, 38, 300-302.                                                                                                                 | 21.4 | 419       |
| 24 | Familial molar tissues due to mutations in the inflammatory gene, NALP7, have normal postzygotic DNA<br>methylation. Human Genetics, 2006, 120, 390-395.                                                                                      | 3.8  | 31        |
| 25 | Shifts in Ribosome Engagement Impact Key Gene Sets in Neurodevelopment and Ubiquitination in Rett<br>Syndrome. SSRN Electronic Journal, 0, , .                                                                                                | 0.4  | Ο         |