Incheol Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11136885/publications.pdf Version: 2024-02-01

INCHEOL CHO

#	Article	IF	CITATIONS
1	Nanogap Formation Using a Chromium Oxide Film and Its Application as a Palladium Hydrogen Switch. Langmuir, 2022, 38, 1072-1078.	3.5	2
2	High Accuracy Real-Time Multi-Gas Identification by a Batch-Uniform Gas Sensor Array and Deep Learning Algorithm. ACS Sensors, 2022, 7, 430-440.	7.8	60
3	Solution-Processable Ag-Mediated ZnO Nanowires for Scalable Low-Temperature Fabrication of Flexible Devices. ACS Applied Electronic Materials, 2022, 4, 910-916.	4.3	12
4	Artificial Olfactory Neuron for an Inâ \in ensor Neuromorphic Nose. Advanced Science, 2022, 9, e2106017.	11.2	39
5	Low-power thermocatalytic hydrogen sensor based on electrodeposited cauliflower-like nanostructured Pt black. Sensors and Actuators B: Chemical, 2021, 329, 129129.	7.8	20
6	Fast Flexible Bottomâ€Gated Hydrogen Sensor Based on Silicon Nanomembrane. Advanced Materials Technologies, 2021, 6, 2000847.	5.8	2
7	Morphology-controllable wrinkled hierarchical structure and its application to superhydrophobic triboelectric nanogenerator. Nano Energy, 2021, 85, 105978.	16.0	54
8	Self-powered strain sensor based on the piezo-transmittance of a mechanical metamaterial. Nano Energy, 2021, 89, 106447.	16.0	30
9	Pt Nanostructures Fabricated by Local Hydrothermal Synthesis for Low-Power Catalytic-Combustion Hydrogen Sensors. ACS Applied Nano Materials, 2021, 4, 7-12.	5.0	28
10	Customizable, conformal, and stretchable 3D electronics via predistorted pattern generation and thermoforming. Science Advances, 2021, 7, eabj0694.	10.3	27
11	Synergetic Effect of Porous Elastomer and Percolation of Carbon Nanotube Filler toward High Performance Capacitive Pressure Sensors. ACS Applied Materials & Interfaces, 2020, 12, 1698-1706.	8.0	113
12	Chemo-Mechanically Operating Palladium-Polymer Nanograting Film for a Self-Powered H ₂ Gas Sensor. ACS Nano, 2020, 14, 16813-16822.	14.6	40
13	Buffered Oxide Etchant Post-Treatment of a Silicon Nanofilm for Low-Cost and Performance-Enhanced Chemical Sensors. ACS Applied Materials & Interfaces, 2020, 12, 37128-37136.	8.0	2
14	Self-Powered Gas Sensor Based on a Photovoltaic Cell and a Colorimetric Film with Hierarchical Micro/Nanostructures. ACS Applied Materials & Interfaces, 2020, 12, 39024-39032.	8.0	24
15	Microporous Elastomer Filter Coated with Metal Organic Frameworks for Improved Selectivity and Stability of Metal Oxide Gas Sensors. ACS Applied Materials & Interfaces, 2020, 12, 13338-13347.	8.0	39
16	Nanotransfer Printing on Textile Substrate with Water-Soluble Polymer Nanotemplate. ACS Nano, 2020, 14, 2191-2201.	14.6	25
17	Monolithic Micro Light-Emitting Diode/Metal Oxide Nanowire Gas Sensor with Microwatt-Level Power Consumption. ACS Sensors, 2020, 5, 563-570.	7.8	87
18	Scratch to sensitize: scratch-induced sensitivity enhancement in semiconductor thin-film sensors. Nanoscale, 2019, 11, 15374-15381.	5.6	1

INCHEOL CHO

#	Article	IF	CITATIONS
19	Highly Sensitive and Wearable Liquid Metalâ€Based Pressure Sensor for Health Monitoring Applications: Integration of a 3Dâ€Printed Microbump Array with the Microchannel. Advanced Healthcare Materials, 2019, 8, e1900978.	7.6	116
20	Strain-Insensitive Soft Pressure Sensor for Health Monitoring Application Using 3D-Printed Microchannel Mold and Liquid Metal. , 2019, , .		3
21	Gas Sensor by Direct Growth and Functionalization of Metal Oxide/Metal Sulfide Core–Shell Nanowires on Flexible Substrates. ACS Applied Materials & Interfaces, 2019, 11, 24298-24307.	8.0	65
22	Biomimetic Turbinate-like Artificial Nose for Hydrogen Detection Based on 3D Porous Laser-Induced Graphene. ACS Applied Materials & Interfaces, 2019, 11, 24386-24394.	8.0	64
23	Low Power Thermo-Catalytic Gas Sensor Based on Suspended Noble-Metal Nanotubes for H2 Sensing. , 2019, , .		3
24	Photocatalytic Gas Sensors Integrated on Micro UV-LEDS for Efficient Photon Energy Transfer. , 2019, ,		1
25	Fully integrated and portable semiconductor-type multi-gas sensing module for IoT applications. Sensors and Actuators B: Chemical, 2018, 265, 660-667.	7.8	55
26	Highly integrated SNO <inf>2</inf> nanotubes using templated ZNO nanowires for low power gas sensors. , 2017, , .		1
27	Micropatterning of metal oxide nanofibers by electrohydrodynamic (EHD) printing towards highly integrated and multiplexed gas sensor applications. Sensors and Actuators B: Chemical, 2017, 250, 574-583.	7.8	74
28	Localized Liquid-Phase Synthesis of Porous SnO ₂ Nanotubes on MEMS Platform for Low-Power, High Performance Gas Sensors. ACS Applied Materials & Interfaces, 2017, 9, 27111-27119.	8.0	81