Simon Pauly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11136046/publications.pdf Version: 2024-02-01

SIMON PALLY

#	Article	IF	CITATIONS
1	Microstructure and properties of TiB2-reinforced Ti–35Nb–7Zr–5Ta processed by laser-powder bed fusion. Journal of Materials Research, 2022, 37, 259-271.	2.6	8
2	Microstructural evolution and properties of a Ti-Nb-Ta-Zr-O prepared by high-pressure torsion. Journal of Alloys and Compounds, 2021, 864, 158828.	5.5	11
3	3D printing of bulk metallic glasses. Materials Science and Engineering Reports, 2021, 145, 100625.	31.8	88
4	Structural evolution of a CuZr-based bulk metallic glass composite during cryogenic treatment observed by in-situ high-energy X-ray diffraction. Journal of Alloys and Compounds, 2021, 871, 159570.	5.5	13
5	CuZr-based bulk metallic glass and glass matrix composites fabricated by selective laser melting. Journal of Materials Science and Technology, 2021, 81, 139-150.	10.7	21
6	Influence of oxygen and plastic deformation on the microstructure and the hardness of a Ti–Nb–Ta–Zr–O Gum Metal. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 828, 142122.	5.6	3
7	Oligocrystalline microstructure in an additively manufactured biocompatible Ti-Nb-Zr-Ta alloy. Materials Letters, 2020, 262, 127149.	2.6	10
8	Long-term room-temperature aging treatment of a bulk metallic glass composite. Journal of Alloys and Compounds, 2020, 820, 153165.	5.5	5
9	Effect of mechanically induced structural rejuvenation on the deformation behaviour of CuZr based bulk metallic glass. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138848.	5.6	19
10	Processing a biocompatible Ti–35Nb–7Zr–5Ta alloy by selective laser melting. Journal of Materials Research, 2020, 35, 1143-1153.	2.6	24
11	Influence of the deformation rate on phase stability and mechanical properties of a Ti–29Nb–13Ta–4.6Zr– <i>x</i> O alloy analyzed by <i>in situ</i> high-energy X-ray diffraction during compression tests. Journal of Materials Research, 2020, 35, 1777-1789.	2.6	7
12	Enhanced tensile plasticity of a CuZr-based bulk metallic glass composite induced by ion irradiation. Journal of Materials Science and Technology, 2019, 35, 2221-2226.	10.7	36
13	Quantitatively determining the martensitic transformation in a CuZr-based bulk metallic glass composite. Journal of Alloys and Compounds, 2019, 782, 961-966.	5.5	16
14	Selective laser melting of a Ti-based bulk metallic glass. Materials Letters, 2018, 212, 346-349.	2.6	101
15	Structural and mechanical characterization of heterogeneities in a CuZr-based bulk metallic glass processed by high pressure torsion. Acta Materialia, 2018, 160, 147-157.	7.9	45
16	Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu. Additive Manufacturing, 2018, 22, 753-757.	3.0	76
17	Selective laser remelting of an additively manufactured Cu-Al-Ni-Mn shape-memory alloy. Materials and Design, 2018, 153, 129-138.	7.0	77
18	Microstructural Characterization of a Laser Surface Remelted Cu-Based Shape Memory Alloy. Materials Research, 2018, 21, .	1.3	0

SIMON PAULY

#	Article	IF	CITATIONS
19	Laser surface remelting of a Cu-Al-Ni-Mn shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 661, 61-67.	5.6	41
20	Phase Formation, Thermal Stability and Mechanical Properties of a Cu-Al-Ni-Mn Shape Memory Alloy Prepared by Selective Laser Melting. Materials Research, 2015, 18, 35-38.	1.3	36
21	Processing metallic glasses by selective laser melting. Materials Today, 2013, 16, 37-41.	14.2	345
22	Influence of Superheat on Microstructure and Mechanical Properties of Ductile Cu47.5Zr47.5Al5 Bulk Metallic Glass-Matrix Composite. Journal of Materials Engineering and Performance, 2011, 20, 1196-1205.	2.5	6
23	Effect of Al and Ag addition on phase formation, thermal stability, and mechanical properties of Cu–Zr-based bulk metallic glasses. Journal of Materials Research, 2011, 26, 1702-1710.	2.6	9
24	Plastically deformable Cu–Zr intermetallics. Scripta Materialia, 2010, 63, 336-338.	5.2	37
25	Thermomechanical characterization of Cu47.5Zr47.5Al5 bulk metallic glass within the homogeneous flow regime. Intermetallics, 2009, 17, 65-71.	3.9	20