AgustÃ-n GonzÃ;lez-Cano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/111342/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measurement of the degree of salinity of water with a fiber-optic sensor. Applied Optics, 1999, 38, 5267.	2.1	63
2	In situsalinity measurements in seawater with a fibre-optic probe. Measurement Science and Technology, 2006, 17, 2227-2232.	1.4	62
3	High-sensitive SPR sensing with Indium Nitride as a dielectric overlay of optical fibers. Sensors and Actuators B: Chemical, 2011, 158, 372-376.	4.0	61
4	Plasmonic sensor based on tapered optical fibers and magnetic fluids for measuring magnetic fields. Sensors and Actuators A: Physical, 2017, 264, 58-62.	2.0	61
5	Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.51¼m region. Sensors and Actuators B: Chemical, 2010, 146, 195-198.	4.0	60
6	Surface plasmon resonance in the visible region in sensors based on tapered optical fibers. Sensors and Actuators B: Chemical, 2014, 190, 881-885.	4.0	52
7	A Polarization-Independent SPR Fiber Sensor. Plasmonics, 2010, 5, 7-12.	1.8	45
8	Improved performance of SPR sensors by a chemical etching of tapered optical fibers. Optics and Lasers in Engineering, 2011, 49, 1065-1068.	2.0	39
9	Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration. Applied Optics, 2006, 45, 7294.	2.1	38
10	Surface plasmon excitation in fiber-optics sensors: a novel theoretical approach. Journal of Lightwave Technology, 2002, 20, 448-453.	2.7	35
11	Multiple surface-plasmon resonance in uniform-waist tapered optical fibers with an asymmetric double-layer deposition. Applied Optics, 2005, 44, 519.	2.1	32
12	Sensing properties of asymmetric double-layer-covered tapered fibers. Applied Optics, 2004, 43, 1615.	2.1	31
13	Plasmonic Sensors Based on Doubly-Deposited Tapered Optical Fibers. Sensors, 2014, 14, 4791-4805.	2.1	29
14	Advanced Plasmonic Fiber-Optic Sensor for High Sensitivity Measurement of Magnetic Field. IEEE Sensors Journal, 2019, 19, 7355-7364.	2.4	26
15	Absorption as a selective mechanism in surface plasmon resonance fiber optic sensors. Optics Letters, 2006, 31, 3089.	1.7	19
16	Hyperparabolic concentrators. Applied Optics, 2009, 48, 712.	2.1	17
17	Fibre-optic SPR sensor with a FBG interrogation scheme for readout enhancement. Sensors and Actuators B: Chemical, 2010, 144, 226-231.	4.0	17
18	Simple model of compound waveguide structures used as fiber-optic sensors. Optics and Lasers in Engineering, 2000, 33, 219-230.	2.0	16

AgustÃn GonzÃilez-Cano

#	ARTICLE	IF	CITATIONS
19	Generation of Surface Plasmons at Waveguide Surfaces in the Mid-Infrared Region. Plasmonics, 2012, 7, 647-652.	1.8	16
20	Signal processing in SPR fiber sensors: Some remarks and a new method. Sensors and Actuators B: Chemical, 2018, 268, 150-156.	4.0	12
21	Selectivity of SPR fiber sensors in absorptive media: An experimental evaluation. Sensors and Actuators B: Chemical, 2011, 160, 592-597.	4.0	9
22	Method of error analysis for phase-measuring algorithms applied to photoelasticity. Applied Optics, 1998, 37, 4488.	2.1	3
23	Moving the wavelength detection range in surface plasmon resonance sensors based on tapered optical fibers. Proceedings of SPIE, 2010, , .	0.8	3
24	Alhacén: una revolución óptica. Arbor, 2015, 191, a262.	0.1	3
25	Automatic determination of isostatics in two-dimensional photoelasticity. Measurement Science and Technology, 2000, 11, 259-265.	1.4	2
26	Theoretical method for the study of plasmon generation in hybrid multilayer-optical fiber structures. IEEE Sensors Journal, 2005, 5, 53-58.	2.4	2
27	Ellipsometric characterization of Bi and Al2O3 coatings for plasmon excitation in an optical fiber sensor. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	0.6	2
28	Microfiber as light source for exciting fluorescence in a polymer optical fiber. Sensors and Actuators B: Chemical, 2016, 223, 30-34.	4.0	1
29	Field method for concentrator design. , 2009, , .		0