József BurgyÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11133867/publications.pdf

Version: 2024-02-01

53794 102487 9,468 69 45 66 citations h-index g-index papers 69 69 69 6435 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Research, 2004, 32, e175-e175.	14.5	751
2	A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO Journal, 2002, 21, 3070-3080.	7.8	562
3	MicroRNA detection by northern blotting using locked nucleic acid probes. Nature Protocols, 2008, 3, 190-196.	12.0	541
4	Size Selective Recognition of siRNA by an RNA Silencing Suppressor. Cell, 2003, 115, 799-811.	28.9	494
5	viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology, 2015, 479-480, 85-103.	2.4	466
6	Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO Journal, 2006, 25, 2768-2780.	7.8	440
7	Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO Journal, 2003, 22, 633-640.	7.8	416
8	Viral suppressors of RNA silencing. Trends in Plant Science, 2011, 16, 265-272.	8.8	385
9	Plant Virus-Derived Small Interfering RNAs Originate Predominantly from Highly Structured Single-Stranded Viral RNAs. Journal of Virology, 2005, 79, 7812-7818.	3.4	373
10	Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO Journal, 2004, 23, 876-884.	7.8	357
11	Identification of grapevine microRNAs and their targets using high throughput sequencing and degradome analysis. Plant Journal, 2010, 62, 960-76.	5.7	335
12	A Viral Satellite RNA Induces Yellow Symptoms on Tobacco by Targeting a Gene Involved in Chlorophyll Biosynthesis using the RNA Silencing Machinery. PLoS Pathogens, 2011, 7, e1002021.	4.7	263
13	Short Defective Interfering RNAs of Tombusviruses Are Not Targeted but Trigger Post-Transcriptional Gene Silencing against Their Helper Virus. Plant Cell, 2002, 14, 359-372.	6.6	215
14	Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO Journal, 2010, 29, 3507-3519.	7.8	214
15	Molecular Biology of Tombusviridae. Advances in Virus Research, 1994, 44, 381-428.	2.1	187
16	Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends in Plant Science, 2004, 9, 76-83.	8.8	175
17	Polerovirus protein PO prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1. Plant Journal, 2010, 62, 463-472.	5.7	173
18	Viral Protein Inhibits RISC Activity by Argonaute Binding through Conserved WG/GW Motifs. PLoS Pathogens, 2010, 6, e1000996.	4.7	163

#	Article	IF	CITATIONS
19	The p122 Subunit of <i>Tobacco Mosaic Virus</i> Replicase Is a Potent Silencing Suppressor and Compromises both Small Interfering RNA- and MicroRNA-Mediated Pathways. Journal of Virology, 2007, 81, 11768-11780.	3.4	157
20	Molecular Bases of Viral RNA Targeting by Viral Small Interfering RNA-Programmed RISC. Journal of Virology, 2007, 81, 3797-3806.	3.4	155
21	Aureusvirus P14 Is an Efficient RNA Silencing Suppressor That Binds Double-Stranded RNAs without Size Specificity. Journal of Virology, 2005, 79, 7217-7226.	3.4	133
22	Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissues. Plant Journal, 2006, 47, 140-151.	5.7	130
23	Deep Sequencing of Viroid-Derived Small RNAs from Grapevine Provides New Insights on the Role of RNA Silencing in Plant-Viroid Interaction. PLoS ONE, 2009, 4, e7686.	2.5	130
24	Structural and Functional Analysis of Viral siRNAs. PLoS Pathogens, 2010, 6, e1000838.	4.7	128
25	Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine. Virology, 2010, 408, 49-56.	2.4	109
26	Functional Analysis of Cymbidium Ringspot Virus Genome. Virology, 1993, 194, 697-704.	2.4	104
27	Double-stranded RNA-binding proteins could suppress RNA interference-mediated antiviral defences. Journal of General Virology, 2003, 84, 975-980.	2.9	103
28	AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system. Nucleic Acids Research, 2013, 41, 5090-5103.	14.5	102
29	RNA Interference-Mediated Intrinsic Antiviral Immunity in Plants. Current Topics in Microbiology and Immunology, 2013, 371, 153-181.	1.1	98
30	NGS of Virus-Derived Small RNAs as a Diagnostic Method Used to Determine Viromes of Hungarian Vineyards. Frontiers in Microbiology, 2015, 9, 122.	3.5	95
31	Cloning and sequencing of potato virus Y (Hungarian isolate) genomic RNA. Gene, 1993, 123, 149-156.	2.2	94
32	In Situ Characterization of Cymbidium Ringspot Tombusvirus Infection-Induced Posttranscriptional Gene Silencing in Nicotiana benthamiana. Journal of Virology, 2003, 77, 6082-6086.	3.4	92
33	The NS3 protein of Rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both siRNAs and miRNAs. Rna, 2007, 13, 1079-1089.	3.5	92
34	Detection of microRNAs by Northern blot analyses using LNA probes. Methods, 2007, 43, 140-145.	3.8	90
35	Inhibition of 3' modification of small RNAs in virus-infected plants require spatial and temporal co-expression of small RNAs and viral silencing-suppressor proteins. Nucleic Acids Research, 2008, 36, 4099-4107.	14.5	81
36	The nonstop decay and the RNA silencing systems operate cooperatively in plants. Nucleic Acids Research, 2018, 46, 4632-4648.	14.5	79

#	Article	IF	CITATIONS
37	Functional dissection of a plant Argonaute. Nucleic Acids Research, 2016, 44, 1384-1397.	14.5	75
38	Plant virus infectionâ€induced persistent host gene downregulation in systemically infected leaves. Plant Journal, 2008, 55, 278-288.	5.7	71
39	Genomeâ€wide identification of viral and host transcripts targeted by viral <scp>siRNAs</scp> in <i>><scp>V</scp>itis vinifera</i> Molecular Plant Pathology, 2013, 14, 30-43.	4.2	69
40	Distinct Effects of p19 RNA Silencing Suppressor on Small RNA Mediated Pathways in Plants. PLoS Pathogens, 2016, 12, e1005935.	4.7	67
41	Virus-induced gene silencing of Mlo genes induces powdery mildew resistance in Triticum aestivum. Archives of Virology, 2012, 157, 1345-1350.	2.1	59
42	Defective Interfering RNA Hinders the Activity of a Tombusvirus-Encoded Posttranscriptional Gene Silencing Suppressor. Journal of Virology, 2005, 79, 450-457.	3.4	56
43	Crispr/Cas9 Mediated Inactivation of Argonaute 2 Reveals its Differential Involvement in Antiviral Responses. Scientific Reports, 2017, 7, 1010.	3.3	56
44	Comparative sequence analysis of four complete primary structures of plum pox virus strains. Virus Genes, 1993, 7, 339-347.	1.6	54
45	Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant Journal, 2010, 62, no-no.	5.7	53
46	Defective Interfering RNA-Mediated Resistance against Cymbidium Ringspot Tombusvirus in Transgenic Plants. Virology, 1993, 193, 313-318.	2.4	48
47	The ORF1 Products of Tombusviruses Play a Crucial Role in Lethal Necrosis of Virus-Infected Plants. Journal of Virology, 2000, 74, 10873-10881.	3.4	41
48	Analysis of small RNAs derived from tomato yellow leaf curl Sardinia virus reveals a cross reaction between the major viral hotspot and the plant host genome. Virus Research, 2013, 178, 287-296.	2.2	39
49	Identification of Nicotiana benthamiana microRNAs and their targets using high throughput sequencing and degradome analysis. BMC Genomics, 2015, 16, 1025.	2.8	37
50	Evidence That ORF 1 and 2 Are the Only Virus-Encoded Replicase Genes of Cymbidium Ringspot Tombusvirus. Virology, 1994, 201, 169-172.	2.4	30
51	Role of Silencing Suppressor Proteins. Methods in Molecular Biology, 2008, 451, 69-79.	0.9	30
52	Nucleotide sequence and infectious in vitro transcripts of RNA 3 of tomato aspermy virus pepper isolate. Virus Research, 1994, 33, 281-289.	2.2	23
53	Generation of Defective Interfering RNA Dimers of Cymbidium Ringspot Tombusvirus. Virology, 1995, 207, 510-517.	2.4	23
54	Cymbidium Ringspot Virus Harnesses RNA Silencing To Control the Accumulation of Virus Parasite Satellite RNA. Journal of Virology, 2008, 82, 11851-11858.	3.4	23

#	Article	IF	CITATIONS
55	The replication of cymbidium ringspot tombusvirus defective interfering-satellite RNA hybrid molecules. Virology, 1992, 190, 579-586.	2.4	18
56	The complete nucleotide sequence and synthesis of infectious RNA of genomic and defective interfering RNAs of TBSV-P. Virus Research, 2000, 69, 131-136.	2.2	16
57	The $5\hat{a} \in \mathbb{R}^2$ regulatory sequences of active miR-146a promoters are hypomethylated and associated with euchromatic histone modification marks in B lymphoid cells. Biochemical and Biophysical Research Communications, 2013, 433, 489-495.	2.1	14
58	Antiviral Silencing and Suppression of Gene Silencing in Plants. , 2016, , 1-33.		12
59	Interactions between Tombusviruses and Satellite RNAs of Tomato Bushy Stunt Virus: A Defect in sat RNA B1 Replication Maps to ORF1 of a Helper Virus. Virology, 1999, 262, 129-138.	2.4	11
60	Transcriptome reprogramming in the shoot apical meristem of CymRSVâ€infected ⟨i⟩Nicotiana benthamiana⟨/i⟩ plants associates with viral exclusion and the lack of recovery. Molecular Plant Pathology, 2019, 20, 1748-1758.	4.2	11
61	Expression of homologous and heterologous viral coat protein-encoding genes using recombinant DI RNA from cymbidium ringspot tombusvirus. Gene, 1994, 138, 159-163.	2.2	10
62	RNA Silencing May Play a Role in but Is Not the Only Determinant of the Multiplicity of Infection. Journal of Virology, 2016, 90, 553-561.	3.4	10
63	Size-dependent cell-to-cell movement of defective interfering RNAs of Cymbidium ringspot virus. Journal of General Virology, 2002, 83, 1505-1510.	2.9	8
64	Tombusvirus Isolation and RNA Extraction. , 1998, 81, 225-230.		6
65	Gel Mobility Shift Assays for RNA Binding Viral RNAi Suppressors. Methods in Molecular Biology, 2011, 721, 245-252.	0.9	6
66	Argonaute 2 Controls Antiviral Activity against Sweet Potato Mild Mottle Virus in Nicotiana benthamiana. Plants, 2021, 10, 867.	3.5	5
67	Consequences of gene transfer between distantly related tombusviruses. Gene, 1993, 129, 191-196.	2.2	4
68	Establishment of an In Vivo ARGONAUTE Reporter System in Plants. Methods in Molecular Biology, 2017, 1640, 73-91.	0.9	1
69	Analysis of siRNA-Suppressor of Gene Silencing Interactions. Methods in Molecular Biology, 2008, 451, 331-337.	0.9	0