
Lucas T Woods

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11130591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Purinergic receptors as potential therapeutic targets in Alzheimer's disease. Neuropharmacology, 2016, 104, 169-179.	4.1	91
2	P2 Receptors for Extracellular Nucleotides in the Central Nervous System: Role of P2X7 and P2Y2 Receptor Interactions in Neuroinflammation. Molecular Neurobiology, 2012, 46, 96-113.	4.0	76
3	P2X7 receptor antagonism prevents IL-1β release from salivary epithelial cells and reduces inflammation in a mouse model of autoimmune exocrinopathy. Journal of Biological Chemistry, 2017, 292, 16626-16637.	3.4	67
4	Loss of P2Y2 Nucleotide Receptors Enhances Early Pathology in the TgCRND8 Mouse Model of Alzheimer's Disease. Molecular Neurobiology, 2014, 49, 1031-1042.	4.0	55
5	P2X7 receptor activation induces inflammatory responses in salivary gland epithelium. American Journal of Physiology - Cell Physiology, 2012, 303, C790-C801.	4.6	53
6	Neuroprotective roles of the P2Y2 receptor. Purinergic Signalling, 2012, 8, 559-578.	2.2	45
7	Increased Expression of TGF- $\hat{1}^2$ Signaling Components in a Mouse Model of Fibrosis Induced by Submandibular Gland Duct Ligation. PLoS ONE, 2015, 10, e0123641.	2.5	45
8	P2Y Receptors in the Mammalian Nervous System: Pharmacology, Ligands and Therapeutic Potential. CNS and Neurological Disorders - Drug Targets, 2012, 11, 722-738.	1.4	40
9	Upâ€regulation and activation of the P2Y ₂ nucleotide receptor mediate neurite extension in <scp>IL</scp> â€1βâ€treated mouse primary cortical neurons. Journal of Neurochemistry, 2013, 125, 885-896.	3.9	37
10	P2Y receptors for extracellular nucleotides: Contributions to cancer progression and therapeutic implications. Biochemical Pharmacology, 2021, 187, 114406.	4.4	29
11	Evolution, correlation, structural impact and dynamics of emerging SARS-CoV-2 variants. Computational and Structural Biotechnology Journal, 2021, 19, 3799-3809.	4.1	24
12	Purinergic signaling in Alzheimer's disease. Brain Research Bulletin, 2019, 151, 25-37.	3.0	20
13	P2Y2 receptors mediate nucleotide-induced EGFR phosphorylation and stimulate proliferation and tumorigenesis of head and neck squamous cell carcinoma cell lines. Oral Oncology, 2020, 109, 104808.	1.5	20
14	P2 Receptors as Therapeutic Targets in the Salivary Gland: From Physiology to Dysfunction. Frontiers in Pharmacology, 2020, 11, 222.	3.5	18
15	Requirement for CD40/CD40L Interactions for Development of Autoimmunity Differs Depending on Specific Checkpoint and Costimulatory Pathways. ImmunoHorizons, 2018, 2, 54-66.	1.8	14
16	P2Y ₂ nucleotide receptor activation enhances the aggregation and self-organization of dispersed salivary epithelial cells. American Journal of Physiology - Cell Physiology, 2014, 307, C83-C96.	4.6	13
17	New Murine Model of Early Onset Autoimmune Thyroid Disease/Hypothyroidism and Autoimmune Exocrinopathy of the Salivary Gland. Journal of Immunology, 2016, 197, 2119-2130.	0.8	13
18	Indomethacin Treatment Post-irradiation Improves Mouse Parotid Salivary Gland Function via Modulation of Prostaglandin E2 Signaling. Frontiers in Bioengineering and Biotechnology, 2021, 9, 697671.	4.1	9

#	Article	IF	CITATIONS
19	P2Y2 receptor antagonism resolves sialadenitis and improves salivary flow in a Sj¶gren's syndrome mouse model. Archives of Oral Biology, 2021, 124, 105067.	1.8	5
20	Early Dry Eye Disease Onset in a NOD.H-2 ^{h4} Mouse Model of Sjögren's Syndrome. , 2022, 63, 18.		1