
Diana N Krause

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11130589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hormonal influences in migraine — interactions of oestrogen, oxytocin and CGRP. Nature Reviews Neurology, 2021, 17, 621-633.	4.9	47
2	Ovariectomy reduces vasocontractile responses of rat middle cerebral arteries after focal cerebral ischemia. Journal of Cardiovascular Pharmacology, 2021, Publish Ahead of Print, .	0.8	1
3	Estrogen receptors α, β and GPER in the CNS and trigeminal system - molecular and functional aspects. Journal of Headache and Pain, 2020, 21, 131.	2.5	58
4	Oxytocin as a regulatory neuropeptide in the trigeminovascular system: Localization, expression and function of oxytocin and oxytocin receptors. Cephalalgia, 2020, 40, 1283-1295.	1.8	19
5	Oxytocin as a regulatory neuropeptide in the trigeminovascular system: localization, expression and function of oxytocin and oxytocin receptors. FASEB Journal, 2020, 34, 1-1.	0.2	0
6	C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system. Journal of Headache and Pain, 2019, 20, 105.	2.5	72
7	CGRP as the target of new migraine therapies — successful translation from bench to clinic. Nature Reviews Neurology, 2018, 14, 338-350.	4.9	617
8	U0126 Attenuates Cerebral Vasoconstriction and Improves Long-Term Neurologic Outcome after Stroke in Female Rats. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 454-460.	2.4	46
9	Genomic and non-genomic regulation of PGC1 isoforms by estrogen to increase cerebral vascular mitochondrial biogenesis and reactive oxygen species protection. European Journal of Pharmacology, 2014, 723, 322-329.	1.7	33
10	Endogenous Ovarian Hormones Affect Mitochondrial Efficiency in Cerebral Endothelium via Distinct Regulation of PGC-1 Isoforms. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 122-128.	2.4	36
11	Male-Female Differences in Upregulation of Vasoconstrictor Responses in Human Cerebral Arteries. PLoS ONE, 2013, 8, e62698.	1.1	31
12	17β-Estradiol prevents cell death and mitochondrial dysfunction by an estrogen receptor-dependent mechanism in astrocytes after oxygen–glucose deprivation/reperfusion. Free Radical Biology and Medicine, 2012, 52, 2151-2160.	1.3	72
13	NOX4 upregulation increases superoxide and mitochondrial dysfunction in brain endothelial cells. FASEB Journal, 2012, 26, 685.16.	0.2	0
14	Estrogen-Receptor-Mediated Protection of Cerebral Endothelial Cell Viability and Mitochondrial Function after Ischemic Insult <i>in vitro</i> . Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 545-554.	2.4	74
15	International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, Classification, and Pharmacology of G Protein-Coupled Melatonin Receptors. Pharmacological Reviews, 2010, 62, 343-380.	7.1	486
16	Dihydrotestosterone Stimulates Cerebrovascular Inflammation through NFκB, Modulating Contractile Function. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 244-253.	2.4	50
17	Mitochondrial Effects of Estrogen Are Mediated by Estrogen Receptor α in Brain Endothelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 782-790.	1.3	135
18	Age alters cerebrovascular inflammation and effects of estrogen. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2333-H2340.	1.5	39

DIANA N KRAUSE

#	Article	IF	CITATIONS
19	Androgenic/Estrogenic Balance in the Male Rat Cerebral Circulation: Metabolic Enzymes and Sex Steroid Receptors. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1841-1852.	2.4	63
20	CEREBROVASCULAR EFFECTS OF OESTROGEN: MULTIPLICITY OF ACTION. Clinical and Experimental Pharmacology and Physiology, 2007, 34, 801-808.	0.9	98
21	Estrogen suppresses brain mitochondrial oxidative stress in female and male rats. Brain Research, 2007, 1176, 71-81.	1.1	173
22	Influence of sex steroid hormones on cerebrovascular function. Journal of Applied Physiology, 2006, 101, 1252-1261.	1.2	320
23	Estrogen and progestagens differentially modulate vascular proinflammatory factors. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E261-E267.	1.8	76
24	Estrogen and Mitochondria: A New Paradigm for Vascular Protection?. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2006, 6, 26-35.	3.4	88
25	Estrogen Modulates Mitochondriaâ€dependent ROS Production in Human Brain Endothelial Cells. FASEB Journal, 2006, 20, LB106.	0.2	0
26	Estrogen Increases Mitochondrial Efficiency and Reduces Oxidative Stress in Cerebral Blood Vessels. Molecular Pharmacology, 2005, 68, 959-965.	1.0	273
27	Testosterone augments endotoxin-mediated cerebrovascular inflammation in male rats. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1843-H1850.	1.5	54
28	Testosterone treatment increases thromboxane function in rat cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H578-H585.	1.5	59
29	Estrogen Receptor Activation of Phosphoinositide-3 Kinase, Akt, and Nitric Oxide Signaling in Cerebral Blood Vessels: Rapid and Long-Term Effects. Molecular Pharmacology, 2005, 67, 105-113.	1.0	128
30	Cerebral vascular mitochondrial efficiency is increased by estrogen treatment. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S180-S180.	2.4	0
31	Estrogen suppresses IL-1β-mediated induction of COX-2 pathway in rat cerebral blood vessels. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H2010-H2019.	1.5	75
32	Effect of estrogen on cerebrovascular prostaglandins is amplified in mice with dysfunctional NOS. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H588-H594.	1.5	22
33	Testosterone suppresses endothelium-dependent dilation of rat middle cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H552-H560.	1.5	83
34	17β-Estradiol increases endothelial nitric oxide synthase mRNA copy number in cerebral blood vessels: quantification by real-time polymerase chain reaction. European Journal of Pharmacology, 2003, 478, 35-38.	1.7	52
35	Multiple forms of estrogen receptor-α in cerebral blood vessels: regulation by estrogen. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E184-E192.	1.8	109
36	17β-Estradiol decreases vascular tone in cerebral arteries by shifting COX-dependent vasoconstriction to vasodilation. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H241-H250.	1.5	95

DIANA N KRAUSE

#	Article	IF	CITATIONS
37	Vascular Endothelial Function: Role of Gonadal Steroids. , 2003, , 95-115.		3
38	Estrogen Increases Endothelial Nitric Oxide Synthase via Estrogen Receptors in Rat Cerebral Blood Vessels. Stroke, 2002, 33, 1685-1691.	1.0	128
39	17β-Estradiol Increases Rat Cerebrovascular Prostacyclin Synthesis by Elevating Cyclooxygenase-1 and Prostacyclin Synthase. Stroke, 2002, 33, 600-605.	1.0	106
40	Melatoninand Cardiovascular Function. , 2002, , 299-310.		15
41	Male–female differences in the relative contribution of endothelial vasodilators released by rat tail artery. Life Sciences, 2002, 71, 1633-1642.	2.0	30
42	MT2Melatonin Receptors Are Present and Functional in Rat Caudal Artery. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 1295-1302.	1.3	144
43	Impact of hormones on the regulation of cerebral vascular tone. International Congress Series, 2002, 1235, 395-399.	0.2	3
44	Regional Differences in the Effect of Oestrogen on Vascular Tone in Isolated Rabbit Arteries. Basic and Clinical Pharmacology and Toxicology, 2002, 91, 77-82.	0.0	9
45	Selected Contribution: Cerebrovascular NOS and cyclooxygenase are unaffected by estrogen in mice lacking estrogen receptor-1±. Journal of Applied Physiology, 2001, 91, 2391-2399.	1.2	64
46	Human urotensin II mediates vasoconstriction via an increase in inositol phosphates. European Journal of Pharmacology, 2000, 406, 265-271.	1.7	99
47	Gonadal hormones affect diameter of male rat cerebral arteries through endothelium-dependent mechanisms. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H610-H618.	1.5	81
48	Estrogen reduces mouse cerebral artery tone through endothelial NOS- and cyclooxygenase-dependent mechanisms. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H511-H519.	1.5	140
49	Estradiol modulates vascular response to melatonin in rat caudal artery. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H1281-H1288.	1.5	11
50	Gender difference in levels of α2-adrenoceptor mRNA in the rat tail artery. European Journal of Pharmacology, 1999, 366, 233-236.	1.7	17
51	Postjunctional $\hat{1}\pm2$ -adrenoceptors in the rat tail artery: effect of sex and castration. European Journal of Pharmacology, 1999, 372, 247-252.	1.7	13
52	Chronic Estrogen Treatment Increases Levels of Endothelial Nitric Oxide Synthase Protein in Rat Cerebral Microvessels. Stroke, 1999, 30, 2186-2190.	1.0	157
53	Effect of melatonin in the rat tail artery: role of K+ channels and endothelial factors. British Journal of Pharmacology, 1998, 123, 1533-1540.	2.7	66
54	Melatonin mediates two distinct responses in vascular smooth muscle. European Journal of Pharmacology, 1998, 345, 67-69.	1.7	189

DIANA N KRAUSE

#	Article	IF	CITATIONS
55	Simulated microgravity increases myogenic tone in rat cerebral arteries. Journal of Applied Physiology, 1998, 85, 1615-1621.	1.2	68
56	Estrogen reduces myogenic tone through a nitric oxide-dependent mechanism in rat cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H292-H300.	1.5	106
57	Relaxant effects of 17β-estradiol in the rat tail artery are greater in females than males. European Journal of Pharmacology, 1996, 308, 305-309.	1.7	25
58	Vascular responses to neuropeptide Y are greater in female than male rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 355, 111-118.	1.4	19
59	Melatonin receptors mediate potentiation of contractile responses to adrenergic nerve stimulation in rat caudal artery. European Journal of Pharmacology, 1995, 276, 207-213.	1.7	95
60	Localization and Physiological Role of Melatonin Receptors in the Visual and Circadian Systems. , 1995, , 61-74.		2
61	Optic nerve transection decreases 2-[1251]iodomelatonin binding in the chick optic tectum. Brain Research, 1992, 590, 325-328.	1.1	6
62	The area of 2-[1251]iodomelatonin binding in the pars tuberalis of the ground squirrel is decreased during hibernation. Brain Research, 1991, 557, 285-288.	1.1	30
63	Regulatory sites in the melatonin system of mammals. Trends in Neurosciences, 1990, 13, 464-470.	4.2	129
64	Muscarinic M1 receptors stimulate phosphoinositide hydrolysis in bovine cerebral arteries. Life Sciences, 1990, 47, 2163-2169.	2.0	9
65	Long-term serial cultivation of arterial and capillary endothelium from adult bovine brain. In Vitro, 1985, 21, 172-180.	1.2	57
66	Biochemical evidence for cholinergic innervation of intracerebral blood vessels. Brain Research, 1983, 266, 261-270.	1.1	123
67	Characterization of Glutamic Acid Decarboxylase Activity in Cerebral Blood Vessels. Journal of Neurochemistry, 1982, 39, 842-849.	2.1	20
68	Specific cerebrovascular localization of glutamate decarâ~ylase activity. Brain Research, 1981, 223, 199-204.	1.1	19
69	GABA receptors in bovine cerebral blood vessels: Binding studies with [3H]muscimol. Brain Research, 1980, 185, 51-57.	1.1	68
70	Specific cerebrovascular localization of GABA-related receptors and enzymes. Brain Research Bulletin, 1980, 5, 173-177.	1.4	25
71	GABA dilates cerebral arteries in vitro and increases regional cerebral blood flow in vivo. Brain Research Bulletin, 1980, 5, 335-339.	1.4	13
72	Pharmacological characterization of GABA receptors mediating vasodilation of cerebral arteries in vitro. Brain Research, 1979, 173, 89-97.	1.1	93