Tomasz Czechowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11129665/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Gene discovery and virus-induced gene silencing reveal branched pathways to major classes of bioactive diterpenoids in <i>Euphorbia peplus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2203890119.	3.3	7
2	Allele-aware chromosome-level genome assembly of Artemisia annua reveals the correlation between ADS expansion and artemisinin yield. Molecular Plant, 2022, 15, 1310-1328.	3.9	47
3	Developing a <i>Nicotiana benthamiana</i> transgenic platform for highâ€value diterpene production and candidate gene evaluation. Plant Biotechnology Journal, 2021, 19, 1614-1623.	4.1	25
4	Editorial: Artemisinin—From Traditional Chinese Medicine to Artemisinin Combination Therapies; Four Decades of Research on the Biochemistry, Physiology, and Breeding of Artemisia annua. Frontiers in Plant Science, 2020, 11, 594565.	1.7	12
5	Impact of osmotic stress on the growth and root architecture of introgression lines derived from a wild ancestor of rice and a modern cultivar. Plant-Environment Interactions, 2020, 1, 122-133.	0.7	2
6	Selection of a subspecies-specific diterpene gene cluster implicated in rice disease resistance. Nature Plants, 2020, 6, 1447-1454.	4.7	66
7	Flavonoid Versus Artemisinin Anti-malarial Activity in Artemisia annua Whole-Leaf Extracts. Frontiers in Plant Science, 2019, 10, 984.	1.7	25
8	Silencing amorpha-4,11-diene synthase Genes in Artemisia annua Leads to FPP Accumulation. Frontiers in Plant Science, 2018, 9, 547.	1.7	19
9	Detailed Phytochemical Analysis of High- and Low Artemisinin-Producing Chemotypes of Artemisia annua. Frontiers in Plant Science, 2018, 9, 641.	1.7	33
10	<i>Artemisia annua</i> mutant impaired in artemisinin synthesis demonstrates importance of nonenzymatic conversion in terpenoid metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15150-15155.	3.3	92
11	Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds. Plant Journal, 2010, 61, 611-622.	2.8	95
12	The Genetic Map of <i>Artemisia annua</i> L. Identifies Loci Affecting Yield of the Antimalarial Drug Artemisinin. Science, 2010, 327, 328-331.	6.0	325
13	Priming of plant innate immunity by rhizobacteria and βâ€aminobutyric acid: differences and similarities in regulation. New Phytologist, 2009, 183, 419-431.	3.5	192
14	A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods, 2008, 4, 18.	1.9	120
15	Eleven Golden Rules of Quantitative RT-PCR. Plant Cell, 2008, 20, 1736-1737.	3.1	580
16	Phosphorus Stress in Common Bean: Root Transcript and Metabolic Responses. Plant Physiology, 2007, 144, 752-767.	2.3	300
17	Identification of 118 <i>Arabidopsis</i> Transcription Factor and 30 Ubiquitin-Ligase Genes Responding to Chitin, a Plant-Defense Elicitor. Molecular Plant-Microbe Interactions, 2007, 20, 900-911.	1.4	254
18	Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant, Cell and Environment, 2007, 30, 85-112.	2.8	533

Tomasz Czechowski

#	Article	IF	CITATIONS
19	Symbiotic Leghemoglobins Are Crucial for Nitrogen Fixation in Legume Root Nodules but Not for General Plant Growth and Development. Current Biology, 2005, 15, 531-535.	1.8	350
20	Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 2005, 139, 5-17.	2.3	2,835
21	Real-time RT-PCR profiling of over 1400Arabidopsistranscription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant Journal, 2004, 38, 366-379.	2.8	590
22	Genome-Wide Reprogramming of Primary and Secondary Metabolism, Protein Synthesis, Cellular Growth Processes, and the Regulatory Infrastructure of Arabidopsis in Response to Nitrogen. Plant Physiology, 2004, 136, 2483-2499.	2.3	926
23	The Sucrose Transporter StSUT1 Localizes to Sieve Elements in Potato Tuber Phloem and Influences Tuber Physiology and Development,. Plant Physiology, 2003, 131, 102-113.	2.3	134
24	De Novo Amino Acid Biosynthesis in Potato Tubers Is Regulated by Sucrose Levels. Plant Physiology, 2003, 133, 683-692.	2.3	71