Hyunbong Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11129641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boosting the Photovoltage of Dye-Sensitized Solar Cells with Thiolated Gold Nanoclusters. Journal of Physical Chemistry Letters, 2015, 6, 217-223.	2.1	78
2	Sequentially Layered CdSe/CdS Nanowire Architecture for Improved Nanowire Solar Cell Performance. Journal of Physical Chemistry C, 2014, 118, 206-213.	1.5	33
3	Direct Evidence of Förster Resonance Energy Transfer for the Enhanced Photocurrent Generation in Dye-Sensitized Solar Cell. Journal of Physical Chemistry C, 2014, 118, 16319-16327.	1.5	11
4	CdSeS Nanowires: Compositionally Controlled Band Gap and Exciton Dynamics. Journal of Physical Chemistry Letters, 2014, 5, 1103-1109.	2.1	38
5	Size-Dependent Energy Transfer Pathways in CdSe Quantum Dot–Squaraine Light-Harvesting Assemblies: Förster versus Dexter. Journal of Physical Chemistry C, 2014, 118, 18453-18461.	1.5	70
6	CdS Nanowire Solar Cells: Dual Role of Squaraine Dye as a Sensitizer and a Hole Transporter. Journal of Physical Chemistry Letters, 2013, 4, 3983-3991.	2.1	37
7	CdSe nanowire solar cells using carbazole as a surface modifier. Journal of Materials Chemistry A, 2013, 1, 5487.	5.2	31
8	Metal-Cluster-Sensitized Solar Cells. A New Class of Thiolated Gold Sensitizers Delivering Efficiency Greater Than 2%. Journal of the American Chemical Society, 2013, 135, 8822-8825.	6.6	292
9	Synchronized Energy and Electron Transfer Processes in Covalently Linked CdSe–Squaraine Dye–TiO ₂ Light Harvesting Assembly. ACS Nano, 2012, 6, 5718-5726.	7.3	89
10	<i>Know Thy Nano Neighbor</i> . Plasmonic <i>versus</i> Electron Charging Effects of Metal Nanoparticles in Dye-Sensitized Solar Cells. ACS Nano, 2012, 6, 4418-4427.	7.3	361
11	Novel unsymmetrical push–pull squaraine chromophores for solution processed small molecule bulk heterojunction solar cells. Solar Energy Materials and Solar Cells, 2012, 98, 224-232.	3.0	46
12	Efficient and stable panchromatic squaraine dyes for dye-sensitized solar cells. Chemical Communications, 2011, 47, 2874.	2.2	157
13	Synthesis of annulated thiophene perylene bisimide analogues: their applications to bulk heterojunction organic solar cells. Chemical Communications, 2011, 47, 5509-5511.	2.2	79
14	Supersensitization of CdS Quantum Dots with a Near-Infrared Organic Dye: Toward the Design of Panchromatic Hybrid-Sensitized Solar Cells. ACS Nano, 2011, 5, 9238-9245.	7.3	138
15	A New Class of Cyclometalated Ruthenium Sensitizers of the Type Ä^NÌ,N for Efficient Dye-Sensitized Solar Cells. Inorganic Chemistry, 2011, 50, 11340-11347.	1.9	59
16	Molecular engineering of thia-bridged triphenylamine heterohelicenes as novel organic dyes for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 225, 17-25.	2.0	12
17	Molecular engineering of push-pull chromophore for efficient bulk-heterojunction morphology in solution processed small molecule organic photovoltaics. Journal of Materials Chemistry, 2011, 21, 7248.	6.7	60
18	A new class of organic sensitizers with fused planar triphenylamine for nanocrystalline dye sensitized solar cells, Journal of Photochemistry and Photochiology A: Chemistry, 2011, 219, 122-131	2.0	18

HYUNBONG CHOI

#	Article	IF	CITATIONS
19	High Molar Extinction Coefficient Organic Sensitizers for Efficient Dye ensitized Solar Cells. Chemistry - A European Journal, 2010, 16, 1193-1201.	1.7	140
20	Efficiency improvement of dye-sensitized tandem solar cell by increasing the photovoltage of the back sub-cell. Electrochimica Acta, 2010, 55, 4642-4646.	2.6	26
21	Stepwise cosensitization through chemically bonding organic dye to CdS quantum-dot-sensitized TiO2 electrode. Applied Physics Letters, 2010, 97, 263506.	1.5	10
22	Molecular Engineering of Efficient Organic Sensitizers Incorporating a Binary π-Conjugated Linker Unit for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 14646-14653.	1.5	67
23	New Efficient Ruthenium Sensitizers with Unsymmetrical Indeno[1,2 <i>-b</i>]thiophene or a Fused Dithiophene Ligand for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2010, 49, 8351-8357.	1.9	47
24	Silole-spaced triarylamine derivatives as highly efficient organic sensitizers in dye-sensitized solar cells (DSSCs). Journal of Materials Chemistry, 2010, 20, 2391.	6.7	97
25	Molecular engineering of panchromatic unsymmetrical squaraines for dye-sensitized solar cell applications. Journal of Materials Chemistry, 2010, 20, 3280.	6.7	70
26	Highly Efficient and Thermally Stable Organic Sensitizers for Solvent-Free Dye-Sensitized Solar Cells. Angewandte Chemie, 2009, 121, 1739-1739.	1.6	1
27	An Efficient Dyeâ€Sensitized Solar Cell with an Organic Sensitizer Encapsulated in a Cyclodextrin Cavity. Angewandte Chemie - International Edition, 2009, 48, 5938-5941.	7.2	86
28	Highly Efficient and Thermally Stable Organic Sensitizers for Solvent-Free Dye-Sensitized Solar Cells. Angewandte Chemie - International Edition, 2009, 48, 1712-1712.	7.2	5
29	Novel organic sensitizers containing a bulky spirobifluorene unit for solar cell. Tetrahedron, 2009, 65, 6236-6243.	1.0	57
30	Novel Amphiphilic Ruthenium Sensitizer with Hydrophobic Thiophene or Thieno(3,2- <i>b</i>)thiophene-Substituted 2,2′-Dipyridylamine Ligands for Effective Nanocrystalline Dye Sensitized Solar Cells. Chemistry of Materials, 2009, 21, 5719-5726.	3.2	51
31	Highly Efficient and Thermally Stable Organic Sensitizers for Solventâ€Free Dye‣ensitized Solar Cells. Angewandte Chemie - International Edition, 2008, 47, 327-330.	7.2	370
32	Stepwise Cosensitization of Nanocrystalline TiO ₂ Films Utilizing Al ₂ O ₃ Layers in Dye‧ensitized Solar Cells. Angewandte Chemie - International Edition, 2008, 47, 8259-8263.	7.2	137
33	Molecular Engineering of Organic Sensitizers Containing p-Phenylene Vinylene Unit for Dye-Sensitized Solar Cells. Journal of Organic Chemistry, 2008, 73, 7072-7079.	1.7	114
34	Molecular engineering of hybrid sensitizers incorporating an organic antenna into ruthenium complex and their application in solar cells. New Journal of Chemistry, 2008, 32, 2233.	1.4	39
35	Enhanced photovoltaic performance and long-term stability of quasi-solid-state dye-sensitized solar cells via molecular engineering. Chemical Communications, 2008, , 4951.	2.2	105
36	A polymer gel electrolyte to achieve ≥6% power conversion efficiency with a novel organic dye incorporating a low-band-gap chromophore. Journal of Materials Chemistry, 2008, 18, 5223.	6.7	136

HYUNBONG CHOI

#	Article	IF	CITATIONS
37	Photoregulated Fluorescence Switching in Axially Coordinated Tin(IV) Porphyrinic Dithienylethene. Inorganic Chemistry, 2008, 47, 2411-2415.	1.9	72
38	Phenomenally High Molar Extinction Coefficient Sensitizer with "Donorâ^'Acceptor―Ligands for Dye-Sensitized Solar Cell Applications. Inorganic Chemistry, 2008, 47, 2267-2273.	1.9	49
39	Synthesis of new julolidine dyes having bithiophene derivatives for solar cell. Tetrahedron, 2007, 63, 1553-1559.	1.0	80
40	Novel organic dyes containing bis-dimethylfluorenyl amino benzo[b]thiophene for highly efficient dye-sensitized solar cell. Tetrahedron, 2007, 63, 3115-3121.	1.0	152
41	Novel conjugated organic dyes containing bis-dimethylfluorenyl amino phenyl thiophene for efficient solar cell. Tetrahedron, 2007, 63, 9206-9212.	1.0	93
42	Synthesis of conjugated organic dyes containing alkyl substituted thiophene for solar cell. Tetrahedron, 2007, 63, 11436-11443.	1.0	85
43	New ruthenium sensitizers containing styryl and antenna fragments. Inorganica Chimica Acta, 2007, 360, 3518-3524.	1.2	18
44	Oligophenylenevinylene-Functionalized Ru(II)-bipyridine Sensitizers for Efficient Dye-Sensitized Nanocrystalline TiO2 Solar Cells. Chemistry of Materials, 2006, 18, 5604-5608.	3.2	108
45	Synthesis and photochromic reactivity of diarylethene trimers bridged by ethenyl and ethynyl unit. Tetrahedron, 2006, 62, 9059-9065.	1.0	29
46	Photochromism and Electrical Transport Characteristics of a Dyad and a Polymer with Diarylethene and Quinoline Units ChemInform, 2006, 37, no.	0.1	0
47	Selective photoswitching of a dyad with diarylethene and spiropyran units. Tetrahedron, 2005, 61, 3719-3723.	1.0	35
48	Synthesis and photochromic reactivity of macromolecules incorporating four dithienylethene units. Tetrahedron, 2005, 61, 12256-12263.	1.0	56
49	Photochromism and Electrical Transport Characteristics of a Dyad and a Polymer with Diarylethene and Quinoline Units. Journal of Organic Chemistry, 2005, 70, 8291-8297.	1.7	63