Florian Waszak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11128565/publications.pdf

Version: 2024-02-01

159585 133252 3,707 66 30 59 citations h-index g-index papers 66 66 66 1952 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Task-switching and long-term priming: Role of episodic stimulus–task bindings in task-shift costs. Cognitive Psychology, 2003, 46, 361-413.	2.2	505
2	Mechanisms of intentional binding and sensory attenuation: The role of temporal prediction, temporal control, identity prediction, and motor prediction Psychological Bulletin, 2013, 139, 133-151.	6.1	286
3	Action effect anticipation: Neurophysiological basis and functional consequences. Neuroscience and Biobehavioral Reviews, 2012, 36, 943-959.	6.1	193
4	Stimulus–response bindings in priming. Trends in Cognitive Sciences, 2014, 18, 376-384.	7.8	190
5	Two Modes of Sensorimotor Integration in Intention-Based and Stimulus-Based Actions. Quarterly Journal of Experimental Psychology, 2007, 60, 1540-1554.	1.1	174
6	On the influence of causal beliefs on the feeling of agency. Consciousness and Cognition, 2011, 20, 1211-1220.	1.5	166
7	A New Look at Sensory Attenuation. Psychological Science, 2010, 21, 1740-1745.	3.3	148
8	Intention-based and stimulus-based mechanisms in action selection. Experimental Brain Research, 2005, 162, 346-356.	1.5	126
9	ERP correlates of action effect prediction and visual sensory attenuation in voluntary action. Neurolmage, 2011, 56, 1632-1640.	4.2	124
10	The role of the preSMA and the rostral cingulate zone in internally selected actions. NeuroImage, 2007, 37, 1354-1361.	4.2	120
11	Believing and Perceiving: Authorship Belief Modulates Sensory Attenuation. PLoS ONE, 2012, 7, e37959.	2.5	82
12	Interaction of task readiness and automatic retrieval in task switching: Negative priming and competitor priming. Memory and Cognition, 2005, 33, 595-610.	1.6	81
13	Short Article: Intention and attention in ideomotor learning. Quarterly Journal of Experimental Psychology, 2009, 62, 219-227.	1.1	81
14	Intentional Binding Is Driven by the Mere Presence of an Action and Not by Motor Prediction. PLoS ONE, 2012, 7, e29557.	2.5	78
15	Neural and behavioral correlates of intentional actions. Neuropsychologia, 2011, 49, 767-776.	1.6	77
16	Semantic generalization of stimulus-task bindings. Psychonomic Bulletin and Review, 2004, 11, 1027-1033.	2.8	75
17	A preactivation account of sensory attenuation. Neuropsychologia, 2013, 51, 922-929.	1.6	73
18	Attenuation of auditory <scp>N</scp> 1 results from identityâ€specific actionâ€effect prediction. European Journal of Neuroscience, 2013, 37, 1152-1158.	2.6	69

#	Article	IF	CITATIONS
19	Action-Effect Bindings and Ideomotor Learning in Intention- and Stimulus-Based Actions. Frontiers in Psychology, 2012, 3, 444.	2.1	68
20	Dissociating what and when of intentional actions. Frontiers in Human Neuroscience, 2009, 3, 3.	2.0	67
21	Effect anticipation modulates deviance processing in the brain. Brain Research, 2007, 1183, 74-82.	2.2	63
22	Neural Correlates of Overcoming Interference from Instructed and Implemented Stimulus–Response Associations. Journal of Neuroscience, 2009, 29, 1766-1772.	3.6	54
23	When Sounds Become Actions: Higher-order Representation of Newly Learned Action Sounds in the Human Motor System. Journal of Cognitive Neuroscience, 2012, 24, 464-474.	2.3	52
24	The costs and benefits of cross-task priming. Memory and Cognition, 2007, 35, 1175-1186.	1.6	46
25	Action prediction modulates both neurophysiological and psychophysical indices of sensory attenuation. Frontiers in Human Neuroscience, 2014, 8, 115.	2.0	41
26	Cross-talk of instructed and applied arbitrary visuomotor mappings. Acta Psychologica, 2008, 127, 30-35.	1.5	40
27	Differences Between Intention-Based and Stimulus-Based Actions. Journal of Psychophysiology, 2006, 20, 9-20.	0.7	40
28	The temporal dynamics of the perceptual consequences of action-effect prediction. Cognition, 2014, 132, 243-250.	2.2	39
29	One Action System or Two? Evidence for Common Central Preparatory Mechanisms in Voluntary and Stimulus-Driven Actions. Journal of Neuroscience, 2011, 31, 16692-16699.	3.6	37
30	The internal anticipation of sensory action effects: when action induces FFA and PPA activity. Frontiers in Human Neuroscience, 2010, 4, 54.	2.0	36
31	Across-task priming revisited: Response and task conflicts disentangled using ex-Gaussian distribution analysis Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 367-374.	0.9	33
32	Stimulus–classification and stimulus–action associations: Effects of repetition learning and durability. Quarterly Journal of Experimental Psychology, 2015, 68, 1744-1757.	1.1	30
33	Do stimulus–response bindings survive a task switch?. European Journal of Cognitive Psychology, 2006, 18, 640-651.	1.3	28
34	The role of prediction and outcomes in adaptive cognitive control. Journal of Physiology (Paris), 2015, 109, 38-52.	2.1	28
35	Action selection and action awareness. Psychological Research, 2009, 73, 602-612.	1.7	27
36	Episodic Sâ€"R bindings and emotion: about the influence of positive and negative action effects on stimulusâ€"response associations. Experimental Brain Research, 2009, 194, 489-494.	1.5	25

#	Article	IF	Citations
37	How action structures time: About the perceived temporal order of action and predicted outcomes. Cognition, 2016, 146, 100-109.	2.2	25
38	Contextualization in Perception and Action. Psychologica Belgica, 2020, 40, 227.	1.9	23
39	Stimulus-classification traces are dominant in response learning. International Journal of Psychophysiology, 2012, 86, 262-268.	1.0	18
40	Top-down versus bottom-up: when instructions overcome automatic retrieval. Psychological Research, 2013, 77, 611-617.	1.7	18
41	The interaction between attention and motor prediction. An ERP study. Neurolmage, 2013, 83, 533-541.	4.2	18
42	Predicting faces and houses: Category-specific visual action-effect prediction modulates late stages of sensory processing. Neuropsychologia, 2014, 61, 11-18.	1.6	17
43	Durability of classification and action learning: differences revealed using ex-Gaussian distribution analysis. Experimental Brain Research, 2013, 226, 373-382.	1.5	14
44	Defining stimulus representation in stimulus–response associations formed on the basis of task execution and verbal codes. Psychological Research, 2018, 82, 744-758.	1.7	14
45	The auditory brain in action: Intention determines predictive processing in the auditory system—A review of current paradigms and findings. Psychonomic Bulletin and Review, 2022, 29, 321-342.	2.8	14
46	Across-Task Long-Term Priming: Interaction of Task Readiness and Automatic Retrieval. Quarterly Journal of Experimental Psychology, 2010, 63, 1414-1429.	1.1	13
47	Multiple priming instances increase the impact of practice-based but not verbal code-based stimulus-response associations. Acta Psychologica, 2018, 184, 100-109.	1.5	13
48	A new look at the relationship between perceptual and motor responses. Visual Cognition, 2004, 11, 947-963.	1.6	12
49	The prediction of visual stimuli influences auditory loudness discrimination. Experimental Brain Research, 2014, 232, 3317-3324.	1.5	12
50	Repetition priming results in sensitivity attenuation. Brain Research, 2015, 1626, 211-217.	2.2	10
51	Agency alters perceptual decisions about action-outcomes. Experimental Brain Research, 2016, 234, 2819-2827.	1.5	10
52	A new look on S–R associations: How S and R link. Acta Psychologica, 2015, 160, 161-169.	1.5	9
53	How long is long-term priming? Classification and action priming in the scale of days. Quarterly Journal of Experimental Psychology, 2019, 72, 1183-1199.	1.1	9
54	Event-related brain potentials to self-triggered tones: Impact of action type and impulsivity traits. Neuropsychologia, 2019, 125, 14-22.	1.6	9

#	Article	IF	CITATIONS
55	The impact of subliminal effect images in voluntary vs. stimulus-driven actions. Cognition, 2016, 156, 6-15.	2.2	8
56	Intention-based and sensory-based predictions. Scientific Reports, 2021, 11, 19899.	3.3	7
57	Human Brain Ages With Hierarchy-Selective Attenuation of Prediction Errors. Cerebral Cortex, 2021, 31, 2156-2168.	2.9	6
58	Mirror and (absence of) counter-mirror responses to action sounds measured with TMS. Social Cognitive and Affective Neuroscience, 2017, 12, 1748-1757.	3.0	5
59	From goals to muscles: motor familiarity shapes the representation of action-related sounds in the human motor system. Cognitive Neuroscience, 2019, 10, 20-29.	1.4	5
60	Dual Process for Intentional and Reactive Decisions. PLoS Computational Biology, 2013, 9, e1003013.	3.2	4
61	Execution-based and verbal code-based stimulus–response associations: proportion manipulations reveal conflict adaptation processes in item-specific priming. Psychological Research, 2020, 84, 2172-2195.	1.7	3
62	Attention modulates repetition effects in a context of low periodicity. Brain Research, 2021, 1767, 147559.	2.2	3
63	Theoretical Perspective on an Ideomotor Brain-Computer Interface: Toward a Naturalistic and Non-invasive Brain-Computer Interface Paradigm Based on Action-Effect Representation. Frontiers in Human Neuroscience, 2021, 15, 732764.	2.0	2
64	Motion prediction for the sensorimotor control of hand prostheses with a brain-machine interface using EEG. , 2022, , .		2
65	Category-specific features and valence in action-effect prediction: An EEG study. Biological Psychology, 2017, 123, 220-225.	2.2	1
66	Action effect predictions in â€~what', â€~when', and â€~whether' intentional actions. Brain Research, 2 147992.	2022, ,	1