Luisa G Carvalheiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11125636/publications.pdf

Version: 2024-02-01

40 papers 8,296 citations

201385 27 h-index 288905 40 g-index

42 all docs 42 docs citations

42 times ranked 7132 citing authors

#	Article	IF	Citations
1	Positive forest cover effects on coffee yields are consistent across regions. Journal of Applied Ecology, 2022, 59, 330-341.	1.9	12
2	Effects of ozone air pollution on crop pollinators and pollination. Global Environmental Change, 2022, 75, 102529.	3.6	9
3	Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210212.	1.2	43
4	The role of soils on pollination and seed dispersal. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200171.	1.8	17
5	Soil-derived Nature's Contributions to People and their contribution to the UN Sustainable Development Goals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200185.	1.8	15
6	Soil eutrophication shaped the composition of pollinator assemblages during the past century. Ecography, 2020, 43, 209-221.	2.1	26
7	Forest and connectivity loss simplify tropical pollination networks. Oecologia, 2020, 192, 577-590.	0.9	22
8	Population genomics of Bombus terrestris reveals high but unstructured genetic diversity in a potential glacial refugium. Biological Journal of the Linnean Society, 2020, 129, 259-272.	0.7	10
9	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	4.7	524
10	Crop fertilization affects pollination service provision – Common bean as a case study. PLoS ONE, 2018, 13, e0204460.	1.1	30
11	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	3.3	401
12	Historical changes in the importance of climate and land use as determinants of Dutch pollinator distributions. Journal of Biogeography, 2017, 44, 696-707.	1.4	23
13	A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 2017, 23, 4946-4957.	4.2	259
14	Exotic plants growing in crop field margins provide little support to mango crop flower visitors. Agriculture, Ecosystems and Environment, 2017, 250, 72-80.	2.5	10
15	The effects of soil eutrophication propagate to higher trophic levels. Global Ecology and Biogeography, 2017, 26, 18-30.	2.7	60
16	Beekeeping practices and geographic distance, not land use, drive gene flow across tropical bees. Molecular Ecology, 2016, 25, 5345-5358.	2.0	66
17	Functional traits help to explain half-century long shifts in pollinator distributions. Scientific Reports, 2016, 6, 24451.	1.6	49
18	Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science, 2016, 351, 388-391.	6.0	342

#	Article	IF	CITATIONS
19	Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 146-151.	3.3	618
20	Susceptibility of pollinators to ongoing landscape changes depends on landscape history. Diversity and Distributions, 2015, 21, 1129-1140.	1.9	43
21	EDITOR'S CHOICE: REVIEW: Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 2015, 52, 1436-1444.	1.9	136
22	The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150294.	1.2	120
23	Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type. Ecology and Evolution, 2015, 5, 4426-4436.	0.8	9
24	Responses of bees to habitat loss in fragmented landscapes of Brazilian Atlantic Rainforest. Landscape Ecology, 2015, 30, 2067-2078.	1.9	77
25	Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications, 2015, 6, 7414.	5.8	656
26	Ecological specialization matters: longâ€term trends in butterfly species richness and assemblage composition depend on multiple functional traits. Diversity and Distributions, 2015, 21, 792-802.	1.9	95
27	Pollinator conservation—the difference between managing for pollination services and preserving pollinator diversity. Current Opinion in Insect Science, 2015, 12, 93-101.	2.2	118
28	Short-Term Effect of Nutrient Availability and Rainfall Distribution on Biomass Production and Leaf Nutrient Content of Savanna Tree Species. PLoS ONE, 2014, 9, e92619.	1.1	32
29	Tree species from different functional groups respond differently to environmental changes during establishment. Oecologia, 2014, 174, 1345-1357.	0.9	34
30	From research to action: enhancing crop yield through wild pollinators. Frontiers in Ecology and the Environment, 2014, 12, 439-447.	1.9	363
31	Pollination and biological control research: are we neglecting two billion smallholders. Agriculture and Food Security, 2014, 3, .	1.6	39
32	Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 2013, 339, 1608-1611.	6.0	1,767
33	A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters, 2013, 16, 584-599.	3.0	875
34	Fit-for-Purpose: Species Distribution Model Performance Depends on Evaluation Criteria – Dutch Hoverflies as a Case Study. PLoS ONE, 2013, 8, e63708.	1.1	207
35	Temporal-Spatial Dynamics in Orthoptera in Relation to Nutrient Availability and Plant Species Richness. PLoS ONE, 2013, 8, e71736.	1.1	11
36	Creating patches of native flowers facilitates crop pollination in large agricultural fields: mango as a case study. Journal of Applied Ecology, 2012, 49, 1373-1383.	1.9	128

3

#	Article	IF	CITATIONS
37	Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters, 2011, 14, 1062-1072.	3.0	681
38	Pollination services decline with distance from natural habitat even in biodiversityâ€rich areas. Journal of Applied Ecology, 2010, 47, 810-820.	1.9	201
39	Diet breadth influences how the impact of invasive plants is propagated through food webs. Ecology, 2010, 91, 1063-1074.	1.5	47
40	Apparent competition can compromise the safety of highly specific biocontrol agents. Ecology Letters, 2008, 11, 690-700.	3.0	97