
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11125635/publications.pdf Version: 2024-02-01

PDV MISDA

#	Article	IF	CITATIONS
1	Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomaterialia, 2009, 5, 1182-1197.	4.1	613
2	Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: Core–shell nanoparticle carrier and drug release response. Acta Biomaterialia, 2007, 3, 838-850.	4.1	427
3	Structure–process–property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomaterialia, 2011, 7, 3432-3445.	4.1	374
4	Controlled release of drug from folate-decorated and graphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response. Materials Science and Engineering C, 2011, 31, 1305-1312.	3.8	372
5	Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Materialia, 2015, 84, 229-236.	3.8	343
6	New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response. Acta Biomaterialia, 2010, 6, 2732-2739.	4.1	325
7	Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique. Journal of Magnetism and Magnetic Materials, 2004, 277, 350-358.	1.0	284
8	On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery: Functionalization, conjugation and drug release kinetics. Acta Biomaterialia, 2007, 3, 233-242.	4.1	269
9	Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomaterialia, 2010, 6, 1140-1148.	4.1	258
10	On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Acta Biomaterialia, 2008, 4, 40-48.	4.1	245
11	A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-grafted-copolymer. Acta Biomaterialia, 2008, 4, 1024-1037.	4.1	226
12	Microstructural evolution in a new 770MPa hot rolled Nb–Ti microalloyed steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 394, 339-352.	2.6	219
13	Anti-microbial active composite nanoparticles with magnetic core and photocatalytic shell: TiO2–NiFe2O4 biomaterial system. Acta Biomaterialia, 2005, 1, 691-703.	4.1	215
14	Synthesis and characterization of nanoparticles with magnetic core and photocatalytic shell: Anatase TiO2–NiFe2O4 system. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 119, 144-151.	1.7	209
15	Impact fracture behavior of clay–reinforced polypropylene nanocomposites. Polymer, 2006, 47, 4421-4433.	1.8	207
16	Antimicrobial function of Nd3+-doped anatase titania-coated nickel ferrite composite nanoparticles: A biomaterial system. Acta Biomaterialia, 2006, 2, 421-432.	4.1	202
17	Chitosan–gelatin scaffolds for tissue engineering: Physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP–buffalo embryonic stem cells. Acta Biomaterialia, 2009, 5, 3453-3466.	4.1	199
18	On significant retention of impact strength in clay–reinforced high-density polyethylene (HDPE) nanocomposites. Polymer, 2006, 47, 2133-2146.	1.8	183

#	Article	IF	CITATIONS
19	A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 111, 164-174.	1.7	176
20	Magnetic properties of nanocrystalline Ni–Zn, Zn–Mn, and Ni–Mn ferrites synthesized by reverse micelle technique. Physica B: Condensed Matter, 2004, 348, 317-328.	1.3	171
21	Enhanced antibactericidal function of W4+-doped titania-coated nickel ferrite composite nanoparticles: A biomaterial system. Acta Biomaterialia, 2008, 4, 273-283.	4.1	171
22	A new family of folate-decorated and carbon nanotube-mediated drug delivery system: Synthesis and drug delivery response. Advanced Drug Delivery Reviews, 2011, 63, 1332-1339.	6.6	163
23	Interplay between grain structure, deformation mechanisms and austenite stability in phase-reversion-induced nanograined/ultrafine-grained austenitic ferrous alloy. Acta Materialia, 2015, 84, 339-348.	3.8	141
24	The influence of grain size on the strain-induced martensite formation in tensile straining of an austenitic 15Cr–9Mn–Ni–Cu stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 578, 408-416.	2.6	138
25	Austenite stability and its effect on the toughness of a high strength ultra-low carbon medium manganese steel plate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 675, 153-163.	2.6	127
26	Deformation processes during tensile straining of ultrafine/nanograined structures formed by reversion in metastable austenitic steels. Scripta Materialia, 2008, 59, 79-82.	2.6	126
27	Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. Acta Biomaterialia, 2011, 7, 2163-2175.	4.1	116
28	Surface damage behavior during scratch deformation of mineral reinforced polymer composites. Acta Materialia, 2004, 52, 4363-4376.	3.8	110
29	The interplay between nanostructured carbon-grafted chitosan scaffolds and protein adsorption on the cellular response of osteoblasts: Structure–function property relationship. Acta Biomaterialia, 2013, 9, 6084-6094.	4.1	108
30	On striking variation in impact toughness of polyethylene–clay and polypropylene–clay nanocomposite systems: The effect of clay–polymer interaction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 458, 150-157.	2.6	97
31	Nanograined/Ultrafine-Grained Structure and Tensile Deformation Behavior of Shear Phase Reversion-Induced 301 Austenitic Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2162-2174.	1.1	94
32	Significance of control of austenite stability and three-stage work-hardening behavior of an ultrahigh strength–high ductility combination transformation-induced plasticity steel. Scripta Materialia, 2013, 68, 865-868.	2.6	94
33	Significance of interplay between austenite stability and deformation mechanisms in governing three-stage work hardening behavior of phase-reversion induced nanograined/ultrafine-grained (NG/UFG) stainless steels with high strength-high ductility combination. Scripta Materialia, 2014, 86, 60-63.	2.6	89
34	Ultrahigh strength hot rolled microalloyed steels: microstructural aspects of development. Materials Science and Technology, 2001, 17, 1119-1129.	0.8	88
35	Magnetic behavior of nanocrystalline nickel ferrite. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 121, 126-136.	1.7	87
36	Microstructure and Deformation Behavior of Phase-Reversion-Induced Nanograined/Ultrafine-Grained Austenitic Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2498-2509.	1.1	87

#	Article	IF	CITATIONS
37	Martensite shear phase reversion-induced nanograined/ultrafine-grained Fe–16Cr–10Ni alloy: The effect of interstitial alloying elements and degree of austenite stability on phase reversion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7779-7792.	2.6	86
38	On the reduced susceptibility to stress whitening behavior of melt intercalated polybutene–clay nanocomposites during tensile straining. Acta Materialia, 2004, 52, 3217-3227.	3.8	79
39	The role of micrometric wollastonite particles on stress whitening behavior of polypropylene composites. Acta Materialia, 2004, 52, 1683-1697.	3.8	78
40	Evolution of crystal structure of Cu precipitates in a low carbon steel. Materials and Design, 2017, 135, 92-101.	3.3	77
41	Unique impact of ferrite in influencing austenite stability and deformation behavior in a hot-rolled Fe–Mn–Al–C steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 595, 86-91.	2.6	74
42	On the scratch deformation of micrometric wollastonite reinforced polypropylene composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 364, 357-369.	2.6	73
43	On enhanced impact strength of calcium carbonate-reinforced high-density polyethylene composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 405, 178-193.	2.6	70
44	Strain hardening behavior of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel and relationship with grain size and deformation mechanism. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 613, 60-70.	2.6	70
45	Microstructural evolution and mechanical properties of high strength microalloyed steels: Ultra Fast Cooling (UFC) versus Accelerated Cooling (ACC). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 580, 257-265.	2.6	66
46	Structure–mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 585, 197-204.	2.6	65
47	Unique serrated flow dependence of critical stress in a hot-rolled Fe–Mn–Al–C steel. Scripta Materialia, 2014, 71, 5-8.	2.6	63
48	Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δferrite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 40-55.	2.6	63
49	Cellular response of preosteoblasts to nanograined/ultrafine-grained structures. Acta Biomaterialia, 2009, 5, 1455-1467.	4.1	62
50	Susceptibility to scratch surface damage of wollastonite- and talc-containing polypropylene micrometric composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 380, 326-339.	2.6	61
51	Effect of Ti variation on microstructure evolution and mechanical properties of low carbon medium Mn heavy plate steel. Materials Characterization, 2019, 152, 21-35.	1.9	60
52	The influence of loading rate and concurrent microstructural evolution in micrometric talc- and wollastonite-reinforced high isotactic polypropylene composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 374, 374-389.	2.6	57
53	Influence of cooling rate on the precipitation behavior in Ti–Nb–Mo microalloyed steels during continuous cooling and relationship to strength. Materials Characterization, 2015, 102, 146-155.	1.9	57
54	Microstructure and mechanical properties of a novel 1000MPa grade TMCP low carbon microalloyed steel with combination of high strength and excellent toughness. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 612, 123-130.	2.6	56

#	Article	IF	CITATIONS
55	Degradation mechanism and increased stability of chitosan-based hybrid scaffolds cross-linked with nanostructured carbon: Process–structure–functional property relationship. Polymer Degradation and Stability, 2013, 98, 2331-2339.	2.7	53
56	Magnetic behavior of nickel ferrite–polyethylene nanocomposites synthesized by mechanical milling process. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 111, 95-100.	1.7	52
57	Relationship of grain size and deformation mechanism to the fracture behavior in high strength–high ductility nanostructured austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 41-50.	2.6	51
58	On the fracture characteristics of impact tested high density polyethylene–calcium carbonate nanocomposites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 452-453, 592-601.	2.6	50
59	On stress whitening during surface deformation in clay-containing polymer nanocomposites: A microstructural approach. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 418, 268-281.	2.6	47
60	Some aspects of surface deformation and fracture of 5–20% calcium carbonate-reinforced polyethylene composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 384, 284-298.	2.6	46
61	Strain rate sensitivity of homopolymer polypropylenes and micrometric wollastonite-filled polypropylene composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 368, 191-204.	2.6	45
62	Favorable Modulation of Preâ€Osteoblast Response to Nanograined/Ultrafineâ€grained Structures in Austenitic Stainless Steel. Advanced Materials, 2009, 21, 1280-1285.	11.1	44
63	A comparative study of the microstructure and properties of 800 MPa microalloyed C-Mn steel welded joints by laser and gas metal arc welding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 669, 150-158.	2.6	44
64	On the determining role of acicular ferrite in V-N microalloyed steel in increasing strength-toughness combination. Materials Characterization, 2016, 118, 446-453.	1.9	43
65	Correlation between deformation behavior and austenite characteristics in a Mn-Al type TRIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 698, 126-135.	2.6	43
66	The impact of intercritical annealing in conjunction with warm deformation process on microstructure, mechanical properties and TRIP effect in medium-Mn TRIP steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 746, 363-371.	2.6	42
67	Structure–property relationship in a 960 MPa grade ultrahigh strength low carbon niobium–vanadium microalloyed steel: The significance of high frequency induction tempering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 618, 112-117.	2.6	41
68	Interplay between deformation behavior and mechanical properties of intercritically annealed and tempered medium-manganese transformation-induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 654, 359-367.	2.6	41
69	Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: Nanohydroxyapatite–silicone rubber composite. Acta Biomaterialia, 2009, 5, 2668-2679.	4.1	40
70	Effect of weld peak temperature on the microstructure, hardness, and transformation kinetics of simulated heat affected zone of hot rolled ultra-low carbon high strength Ti–Mo ferritic steel. Materials & Design, 2014, 60, 302-309.	5.1	40
71	The determining role of calcium carbonate on surface deformation during scratching of calcium carbonate-reinforced polyethylene composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 404, 208-220.	2.6	39
72	Interplay between reversed austenite and plastic deformation in a directly quenched and intercritically annealed 0.04C-5Mn low-Al steel. Journal of Alloys and Compounds, 2017, 695, 2072-2082.	2.8	39

#	Article	IF	CITATIONS
73	High strength–toughness combination of melt intercalated nanoclay-reinforced thermoplastic olefins. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 460-461, 277-287.	2.6	38
74	Biological significance of nanograined/ultrafine-grained structures: Interaction with fibroblasts. Acta Biomaterialia, 2010, 6, 3339-3348.	4.1	38
75	Investigation of mechanical, thermal and surface properties of nanoclay/HDPE nanocomposites produced industrially by melt mixing approach. Journal of Composite Materials, 2016, 50, 3105-3116.	1.2	37
76	Nanoparticle effects on spherulitic structure and phase formation in polypropylene crystallized at moderately elevated pressures: The influence on fracture resistance. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 480, 181-188.	2.6	35
77	Copper precipitation and its impact on mechanical properties in a low carbon microalloyed steel processed by a three-step heat treatment. Materials & Design, 2014, 63, 42-49.	5.1	35
78	The potential significance of microalloying with niobium in governing very high cycle fatigue behavior of bainite/martensite multiphase steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 650, 438-444.	2.6	35
79	Influence of annealing temperature on microstructure and tensile property of cold-rolled Fe-0.2C-11Mn-6Al steel. Materials Characterization, 2018, 137, 256-262.	1.9	35
80	On surface deformation of melt-intercalated polyethylene–clay nanocomposites during scratching. Polymer Engineering and Science, 2006, 46, 1625-1634.	1.5	34
81	Nanoscale near-surface deformation in polymer nanocomposites. Acta Materialia, 2008, 56, 2089-2100.	3.8	34
82	The effect of coiling temperature on the microstructure and mechanical properties of a niobium–titanium microalloyed steel processed via thin slab casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 595, 143-153.	2.6	34
83	Effect of heat input on microstructure and properties of hybrid fiber laser-arc weld joints of the 800MPa hot-rolled Nb-Ti-Mo microalloyed steels. Optics and Lasers in Engineering, 2017, 91, 86-96.	2.0	33
84	Effect of intercritical rolling temperature on microstructure-mechanical property relationship in a medium Mn-TRIP steel containing l´ferrite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 720, 1-10.	2.6	33
85	Microstructure and deformation behavior of the hot-rolled medium manganese steels with varying aluminum-content. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 676, 263-270.	2.6	32
86	Near surface deformation associated with the scratch in polypropylene–clay nanocomposite: A microscopic study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 418, 292-302.	2.6	31
87	Strain hardening behavior of nanograined/ultrafine-grained (NG/UFG) austenitic 16Cr–10Ni stainless steel and its relationship to austenite stability and deformation behavior. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 649, 153-157.	2.6	31
88	The influence of microstructural characteristics on yield point elongation phenomenon in Fe-0.2C-11Mn-2Al steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 17-25.	2.6	31
89	Cellular activity of bioactive nanograined/ultrafine-grained materials. Acta Biomaterialia, 2010, 6, 2826-2835.	4.1	30
90	Structure–mechanical property relationship in a high strength microalloyed steel with low yield ratio: The effect of tempering temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 609, 209-216.	2.6	29

#	Article	IF	CITATIONS
91	Influence of grain structure on the deformation mechanism in martensitic shear reversion-induced Fe-16Cr-10Ni model austenitic alloy with low interstitial content: Coarse-grained versus nano-grained/ultrafine-grained structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 661, 51-60.	2.6	27
92	Effect of hot rolling temperature on the microstructure and mechanical properties of ultra-low carbon medium manganese steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 731, 149-155.	2.6	27
93	Synthesis, structure and properties of a novel hybrid bimodal network elastomer with inorganic cross-links: The case of silicone–nanocrystalline titania. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 523, 199-206.	2.6	24
94	Nanoparticle effects during pressure-induced crystallization of polypropylene. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 153, 88-95.	1.7	22
95	Hybrid nanostructured drug carrier with tunable and controlled drug release. Materials Science and Engineering C, 2012, 32, 1704-1709.	3.8	22
96	Determination of the mechanical, thermal and physical properties of nano-CaCO ₃ filled high-density polyethylene nanocomposites produced in an industrial scale. Journal of Composite Materials, 2016, 50, 3445-3456.	1.2	22
97	The significant impact of phase fraction and austenite stability on the mechanical properties of a low-alloyed TRIP-aided steel: An insight into experimental analysis and predictions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 40-46.	2.6	22
98	The determining role of scratch indenter radius on surface deformation of high density polyethylene and calcium carbonate-reinforced composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 456, 218-229.	2.6	21
99	Competing deformation mechanisms in an austenite-ferrite medium-Mn steel at different strain rates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 818, 141357.	2.6	21
100	Biomimetic nanostructured coatings on nano-grained/ultrafine-grained substrate: Microstructure, surface adhesion strength, and biosolubility. Materials Science and Engineering C, 2009, 29, 2417-2427.	3.8	20
101	The effect of crystallization pressure on macromolecular structure, phase evolution, and fracture resistance of nano-calcium carbonate-reinforced high density polyethylene. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6699-6713.	2.6	20
102	Hydrogen diffusivity in different microstructural components in martensite matrix with retained austenite. International Journal of Hydrogen Energy, 2021, 46, 8269-8284.	3.8	20
103	Combining a novel cyclic pre-quenching and two-stage heat treatment in a low-alloyed TRIP-aided steel to significantly enhance mechanical properties through microstructural refinement. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764. 138231.	2.6	19
104	Hierarchical structures and phase nucleation and growth during pressure-induced crystallization of polypropylene containing dispersion of nanoclay: The impact on physical and mechanical properties. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2163-2181.	2.6	18
105	Effect of microalloying with molybdenum and boron on the microstructure and mechanical properties of ultra-low-C Ti bearing steel. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 640, 259-266.	2.6	18
106	The determining impact of coiling temperature on the microstructure and mechanical properties of a titanium-niobium ultrahigh strength microalloyed steel: Competing effects of precipitation and bainite. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 665, 1-9.	2.6	18
107	Austenite stability and mechanical properties of a low-alloyed ECAPed TRIP-aided steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 724, 95-102.	2.6	18
108	The effect of nitrogen on the formation of phase reversion-induced nanograined/ultrafine-grained structure and mechanical behavior of a Cr–Ni–N steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1889-1896.	2.6	17

#	Article	IF	CITATIONS
109	Structure-property relationship in novel low carbon hot-rolled TRIP steels via thermo-mechanical controlled processing and coiling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138643.	2.6	17
110	Nanoparticle interface driven microstructural evolution and crystalline phases of polypropylene: The effect of nanoclay content on structure and physical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6002-6011.	2.6	16
111	On the structure-property relationship in a novel 1000ÂMPa hot-rolled TRIP steel with strain-assisted ferrite transformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 821, 141594.	2.6	16
112	Nanoparticle effects on the crystallization of polyethylene at elevated pressures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 492, 434-442.	2.6	15
113	Structure–property relationship in impact modified nanoclay-reinforced polypropylene. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1857-1863.	2.6	15
114	Mechanics of nanoscale surface deformation in polypropylene-clay nanocomposite. Mechanics of Materials, 2012, 45, 103-116.	1.7	13
115	Superparamagnetic behaviour of nanocrystalline Ni – Zn, Zn – Mn and Ni – Mn ferrites processed by reverse micelle method. Materials Science and Technology, 2004, 20, 999-1005.	0.8	11
116	The role of nanocrystalline titania coating on nanostructured austenitic stainless steel in enhancing osteoblasts functions for regeneration of tissue. Materials Science and Engineering C, 2011, 31, 458-471.	3.8	11
117	Effect of inorganic nanofillers on the impact behavior and fracture probability of industrial high-density polyethylene nanocomposite. Journal of Composite Materials, 2018, 52, 2431-2442.	1.2	10
118	On the dynamic behavior and relationship to mechanical properties of cold-rolled Fe-0.2C-15Mn-3Al steel at intermediate strain rate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 423-431.	2.6	9
119	Micromechanism of surface and sub-surface deformation behavior of high density polyethylene containing dispersion of nanoparticles: An electron microscopy study and indenter-substrate interaction. Mechanics of Materials, 2011, 43, 254-268.	1.7	8
120	Nanoscale elastic–plastic deformation in clay-reinforced nanostructured materials: The response of phase and structural morphology. Journal of Composite Materials, 2014, 48, 385-405.	1.2	8
121	Multiphase bainite - martensite steels: The significant impact of niobium microalloying on structure and mechanical behavior. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 730, 262-269.	2.6	8
122	Microstructural evolution and mechanical properties of 9Mn steel during warm/cold rolling and subsequent intercritical annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 796, 140051.	2.6	6
123	Structure–property relationships in heat-affected zone of gas-shielded arc-welded V–N microalloyed steel. Journal of Iron and Steel Research International, 2018, 25, 1244-1254.	1.4	5
124	Effect of prior austenite on reversed austenite stability and mechanical properties of low carbon medium manganese steel heavy plate. Materialwissenschaft Und Werkstofftechnik, 2019, 50, 1221-1231.	0.5	0