Zuojia Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1112520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pronounced Effects of a Triazine Core on Photovoltaic Performance–Efficient Organic Solar Cells Enabled by a PDI Trimerâ€Based Small Molecular Acceptor. Advanced Materials, 2017, 29, 1605115.	21.0	235
2	Highly Efficient Nonfullerene Polymer Solar Cells Enabled by a Copper(I) Coordination Strategy Employing a 1,3,4â€Oxadiazoleâ€Containing Wideâ€Bandgap Copolymer Donor. Advanced Materials, 2018, 30, e1800737.	21.0	77
3	Polymer Solar Cells Exceeding 10% Efficiency Enabled via a Facile Starâ€Shaped Molecular Cathode Interlayer with Variable Counterions. Advanced Functional Materials, 2016, 26, 4643-4652.	14.9	67
4	Solutionâ€Processed Organic Solar Cells with 9.8% Efficiency Based on a New Small Molecule Containing a 2D Fluorinated Benzodithiophene Central Unit. Advanced Electronic Materials, 2016, 2, 1600061.	5.1	58
5	Solution-Processable Small Molecules for High-Performance Organic Solar Cells with Rigidly Fluorinated 2,2′-Bithiophene Central Cores. ACS Applied Materials & Interfaces, 2016, 8, 11639-11648.	8.0	46
6	Aminoâ€Functionalized Graphene Quantum Dots as Cathode Interlayer for Efficient Organic Solar Cells: Quantum Dot Size on Interfacial Modification Ability and Photovoltaic Performance. Advanced Materials Interfaces, 2019, 6, 1801480.	3.7	42
7	Self-doping small molecular conjugated electrolytes enabled by n-type side chains for highly efficient non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 22503-22507.	10.3	31
8	Large band-gap copolymers based on a 1,2,5,6-naphthalenediimide unit for polymer solar cells with high open circuit voltages and power conversion efficiencies. Journal of Materials Chemistry A, 2016, 4, 7372-7381.	10.3	25
9	Chalcogenâ€Atomâ€Annulated Perylene Diimide Trimers for Highly Efficient Nonfullerene Polymer Solar Cells. Macromolecular Rapid Communications, 2017, 38, 1700405.	3.9	23
10	Tris(8â€hydroxyquinoline)aluminum(III)â€Cored Molecular Cathode Interlayer: Improving Electron Mobility and Photovoltaic Efficiency of Polymer Solar Cells. Solar Rrl, 2018, 2, 1800182.	5.8	22
11	The enhanced performance of fluorinated quinoxaline-containing polymers by replacing carbon with silicon bridging atoms on the dithiophene donor skeleton. Polymer Chemistry, 2015, 6, 2337-2347.	3.9	21
12	Highly Efficient Nonâ€Fullerene Polymer Solar Cells Enabled by Wide Bandgap Copolymers With Conjugated Selenyl Side Chains. Solar Rrl, 2018, 2, 1800186.	5.8	21
13	Synthesis and characterization of copolymers based on benzotriazoles and different atom-bridged dithiophenes for efficient solar cells. Polymer Chemistry, 2013, 4, 2496.	3.9	17
14	Side-Chain Influence of Wide-Bandgap Copolymers Based on Naphtho[1,2- <i>b</i> :5,6- <i>b</i>]bispyrazine and Benzo[1,2- <i>b</i> :4,5- <i>b</i> â€2]dithiophene for Efficient Photovoltaic Applications. ACS Applied Materials & Interfaces, 2017, 9, 18142-18150.	8.0	17
15	Highly efficient polymer solar cells <i>via</i> multiple cascade energy level engineering. Journal of Materials Chemistry C, 2018, 6, 9119-9129.	5.5	16
16	Two-dimensional photovoltaic copolymers with spatial D-A-D structures: synthesis, characterization and hetero-atom effect. Science China Chemistry, 2015, 58, 276-285.	8.2	12
17	Solution-Processable All-Small-Molecules for High-Performance Nonfullerene Organic Solar Cells with High Crystallinity Acceptor. Journal of Physical Chemistry C, 2019, 123, 28021-28026.	3.1	11
18	A new host material achieving above 75 cd A ^{â^'1} current efficiency with top-emitting deep-red phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 13247-13254.	5.5	5

Zuojia Li

#	ARTICLE	IF	CITATIONS
19	Highly Efficient Allâ€Polymer Solar Cells Processed from Nonhalogenated Solvents. ChemSusChem, 2021, 14, 3553-3560.	6.8	4
20	Adjusting the photovoltaic performance of big fused ring-based small molecules by tailoring with different modifications. RSC Advances, 2021, 11, 39625-39635.	3.6	2
21	Ploymer Solar Cells: Polymer Solar Cells Exceeding 10% Efficiency Enabled via a Facile Star-Shaped Molecular Cathode Interlayer with Variable Counterions (Adv. Funct. Mater. 26/2016). Advanced Functional Materials, 2016, 26, 4803-4803.	14.9	1
22	Synthesis and characterization of mainâ€chain, secondâ€order, nonlinear optical polyurethanes with isolation moieties and zigzag structures. Journal of Applied Polymer Science, 2016, 133, .	2.6	0