Anne Gallagher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11123762/publications.pdf

Version: 2024-02-01

		471509	552781
38	796	17	26
papers	citations	h-index	g-index
39	39	39	1068
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	LIONirs: flexible Matlab toolbox for fNIRS data analysis. Journal of Neuroscience Methods, 2022, 370, 109487.	2.5	7
2	Early protein energy malnutrition impacts life-long developmental trajectories of the sources of EEG rhythmic activity. NeuroImage, 2022, 254, 119144.	4.2	8
3	Gross Motor Development of Children with Congenital Heart Disease Receiving Early Systematic Surveillance and Individualized Intervention: Brief Report. Developmental Neurorehabilitation, 2021, 24, 56-62.	1.1	25
4	Neurodevelopmental Outcome of Children with Congenital Heart Disease: A Cohort Study from Infancy to Preschool Age. Journal of Pediatrics, 2021, 239, 126-135.e5.	1.8	13
5	Neuropsychologic assessment. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 174, 239-249.	1.8	2
6	Impacts of an Interdisciplinary Developmental Follow-Up Program on Neurodevelopment in Congenital Heart Disease: The CINC Study. Frontiers in Pediatrics, 2020, 8, 539451.	1.9	10
7	Description and classification of neurodevelopmental disabilities. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 173, 3-6.	1.8	O
8	Functional Brain Connectivity of Language Functions in Children Revealed by EEG and MEG: A Systematic Review. Frontiers in Human Neuroscience, 2020, 14, 62.	2.0	32
9	Language development in children with congenital heart disease aged 12–24 months. European Journal of Paediatric Neurology, 2019, 23, 491-499.	1.6	31
10	Multichannel wearable f <scp>NIRSâ€EEG</scp> system for longâ€term clinical monitoring. Human Brain Mapping, 2018, 39, 7-23.	3.6	56
11	Comparison of source localization techniques in diffuse optical tomography for fNIRS application using a realistic head model. Biomedical Optics Express, 2018, 9, 2994.	2.9	27
12	Significant motor improvement in an infant with congenital heart disease and a rolandic stroke: The impact of early intervention. Developmental Neurorehabilitation, 2017, 20, 165-168.	1.1	13
13	Periictal activity in cooled asphyxiated neonates with seizures. Seizure: the Journal of the British Epilepsy Association, 2017, 47, 13-16.	2.0	4
14	Language mapping in children using resting-state functional connectivity: comparison with a task-based approach. Journal of Biomedical Optics, 2016, 21, 125006.	2.6	16
15	Distinct hemispheric specializations for native and non-native languages in one-day-old newborns identified by fNIRS. Neuropsychologia, 2016, 84, 63-69.	1.6	56
16	Rewarming affects EEG background in term newborns with hypoxic–ischemic encephalopathy undergoing therapeutic hypothermia. Clinical Neurophysiology, 2016, 127, 2087-2094.	1.5	12
17	Potential brain language reorganization in a boy with refractory epilepsy; an fNIRS–EEG and fMRI comparison. Epilepsy & Behavior Case Reports, 2016, 5, 34-37.	1.5	18
18	Cerebral hemodynamic changes during limb-shaking TIA: A near-infrared spectroscopy study. Neurology, 2016, 86, 1166-1168.	1.1	7

#	Article	IF	CITATIONS
19	ISDN2014_0115: Born too soon? Cognitive and electrophysiological evaluation of atypical language processing in the prematurely born baby. International Journal of Developmental Neuroscience, 2015, 47, 32-33.	1.6	1
20	Early electrophysiological markers of atypical language processing in prematurely born infants. Neuropsychologia, 2015, 79, 21-32.	1.6	27
21	Developmental patterns of expressive language hemispheric lateralization in children, adolescents and adults using functional near-infrared spectroscopy. Neuropsychologia, 2015, 68, 117-125.	1.6	33
22	Neuropsychological functioning in children with temporal lobe epilepsy and hippocampal atrophy without mesial temporal sclerosis: A distinct clinical entity?. Epilepsy and Behavior, 2015, 44, 17-22.	1.7	5
23	Early childhood development of visual texture segregation in full-term and preterm children. Vision Research, 2015, 112, 1-10.	1.4	0
24	Visual Development and Neuropsychological Profile in Preterm Children from 6 Months to School Age. Journal of Child Neurology, 2015, 30, 1159-1173.	1.4	12
25	The utility of near infrared spectroscopy in pediatric epilepsy. Journal of Pediatric Epilepsy, 2015, 02, 087-092.	0.2	1
26	Delayed Early Primary Visual Pathway Development in Premature Infants: High Density Electrophysiological Evidence. PLoS ONE, 2014, 9, e107992.	2.5	25
27	Diffuse cerebral language representation in tuberous sclerosis complex. Epilepsy Research, 2013, 104, 125-133.	1.6	9
28	Cognitive outcome of surgery. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 111, 797-802.	1.8	10
29	Neurophysiological Correlates of Auditory and Language Development: A Mismatch Negativity Study. Developmental Neuropsychology, 2013, 38, 386-401.	1.4	21
30	Decreased language laterality in tuberous sclerosis complex:. Epilepsy and Behavior, 2012, 25, 36-41.	1.7	12
31	The contribution of functional near-infrared spectroscopy (fNIRS) to the presurgical assessment of language function in children. Brain and Language, 2012, 121, 124-129.	1.6	21
32	Specific functional asymmetries of the human visual cortex revealed by functional near-infrared spectroscopy. Brain Research, 2012, 1431, 62-68.	2.2	10
33	MRI findings reveal three different types of tubers in patients with tuberous sclerosis complex. Journal of Neurology, 2010, 257, 1373-1381.	3.6	81
34	Progressive calcified tuber in a young male with tuberous sclerosis complex. Developmental Medicine and Child Neurology, 2010, 52, 1062-1065.	2.1	24
35	Associations between electroencephalographic and magnetic resonance imaging findings in tuberous sclerosis complex. Epilepsy Research, 2009, 87, 197-202.	1.6	29
36	Non-invasive pre-surgical investigation of a 10 year-old epileptic boy using simultaneous EEG–NIRS. Seizure: the Journal of the British Epilepsy Association, 2008, 17, 576-582.	2.0	55

3

Anne Gallagher

#	Article	IF	CITATIONS
37	A noninvasive, presurgical expressive and receptive language investigation in a 9-year-old epileptic boy using near-infrared spectroscopy. Epilepsy and Behavior, 2008, 12, 340-346.	1.7	27
38	Nearâ€infrared spectroscopy as an alternative to the Wada test for language mapping in children, adults and special populations. Epileptic Disorders, 2007, 9, 241-255.	1.3	56