Lilian Alessa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11122218/publications.pdf Version: 2024-02-01

LILIAN ALESSA

#	Article	IF	CITATIONS
1	Social–ecological hotspots mapping: A spatial approach for identifying coupled social–ecological space. Landscape and Urban Planning, 2008, 85, 27-39.	7.5	304
2	The arctic freshwater system: Changes and impacts. Journal of Geophysical Research, 2007, 112, .	3.3	203
3	A social-ecological systems approach for environmental management. Journal of Environmental Management, 2016, 178, 83-91.	7.8	159
4	The Science of Firescapes: Achieving Fire-Resilient Communities. BioScience, 2016, 66, 130-146.	4.9	157
5	The Arctic Water Resource Vulnerability Index: An Integrated Assessment Tool for Community Resilience and Vulnerability with Respect to Freshwater. Environmental Management, 2008, 42, 523-541.	2.7	120
6	Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems. Remote Sensing of Environment, 2014, 154, 322-337.	11.0	107
7	A comparison of perceptions of biological value with scientific assessment of biological importance. Applied Geography, 2004, 24, 161-180.	3.7	97
8	Perception of change in freshwater in remote resource-dependent Arctic communities. Global Environmental Change, 2008, 18, 153-164.	7.8	89
9	The Contributions of Community-Based Monitoring and Traditional Knowledge to Arctic Observing Networks: Reflections on the State of the Field. Arctic, 2015, 68, 28.	0.4	83
10	The role of Indigenous science and local knowledge in integrated observing systems: moving toward adaptive capacity indices and early warning systems. Sustainability Science, 2016, 11, 91-102.	4.9	81
11	Effects of knowledge, personal attribution and perception of ecosystem health on depreciative behaviors in the intertidal zone of Pacific Rim National Park and Reserve. Journal of Environmental Management, 2003, 68, 207-218.	7.8	66
12	Anthropogenic biomes: a key contribution to earth-system science. Trends in Ecology and Evolution, 2008, 23, 529-531.	8.7	46
13	Freshwater vulnerabilities and resilience on the Seward Peninsula: Integrating multiple dimensions of landscape change. Global Environmental Change, 2008, 18, 256-270.	7.8	38
14	Walrus harvest locations reflect adaptation: a contribution from a community-based observation network in the Bering Sea. Polar Geography, 2014, 37, 48-68.	1.9	38
15	Understanding largeâ€scale, complex, human–environmental processes: a framework for social–ecological observatories. Frontiers in Ecology and the Environment, 2018, 16, S52.	4.0	33
16	Assessing the Impacts of Local Knowledge and Technology on Climate Change Vulnerability in Remote Communities. International Journal of Environmental Research and Public Health, 2011, 8, 733-761.	2.6	31
17	The Rotten Renaissance in the Bering Strait. Current Anthropology, 2014, 55, 619-646.	1.6	31
18	Forgetting Freshwater: Technology, Values, and Distancing in Remote Arctic Communities. Society and Natural Resources, 2010, 23, 254-268.	1.9	25

LILIAN ALESSA

#	Article	IF	CITATIONS
19	Integrating complexity in the management of human-wildlife encounters. Global Environmental Change, 2014, 26, 73-86.	7.8	25
20	Toward a typology for social-ecological systems. Sustainability: Science, Practice, and Policy, 2009, 5, 31-41.	1.9	24
21	A science of integration: frameworks, processes, and products in a place-based, integrative study. Sustainability Science, 2017, 12, 293-303.	4.9	22
22	Aluminum toxicity studies in Vaucheria longicaulis var. macounii (Xanthophyta, Tribophyceae). II. Effects on the F-actin array. Environmental and Experimental Botany, 2001, 45, 223-237.	4.2	16
23	The distancing effect of modernization on the perception of water resources in Arctic communities. Polar Geography, 2007, 30, 175-191.	1.9	16
24	Community-based observing networks and systems in the Arctic: Human perceptions of environmental change and instrument-derived data. Regional Environmental Change, 2018, 18, 547-559.	2.9	15
25	Planning for Idaho's waterscapes: A review of historical drivers and outlook for the next 50 years. Environmental Science and Policy, 2019, 94, 191-201.	4.9	15
26	Role of perception in determining adaptive capacity: communities adapting to environmental change. Sustainability Science, 2017, 12, 3-13.	4.9	14
27	Using the Arctic water resources vulnerability index in assessing and responding to environmental change in Alaskan communities. Climate Risk Management, 2019, 23, 19-31.	3.2	13
28	Contrasting stakeholder and scientist conceptual models of food-energy-water systems: a case study in Magic Valley, Southern Idaho. Socio-Environmental Systems Modeling, 0, 2, 16312.	0.0	13
29	MtnSEON and social–ecological systems science in complex mountain landscapes. Frontiers in Ecology and the Environment, 2018, 16, S4.	4.0	12
30	Potential impacts of a changing Arctic on community water sources on the Seward Peninsula, Alaska. Journal of Geophysical Research, 2007, 112, .	3.3	10
31	Transforming sustainability science for practice: a social–ecological systems framework for training sustainability professionals. Sustainability Science, 2021, 16, 283-294.	4.9	10
32	Alaska's Freshwater Resources: Issues Affecting Local and International Interests1. Journal of the American Water Resources Association, 2011, 47, 143-157.	2.4	9
33	Minding Our Methods: How Choice of Time Series, Reference Dates, and Statistical Approach Can Influence the Representation of Temperature Change. Environmental Science & Technology, 2012, 46, 7435-7441.	10.0	9
34	Water Relationships in the U.S. Southwest: Characterizing Water Management Networks Using Natural Language Processing. Water (Switzerland), 2014, 6, 1601-1641.	2.7	9
35	Communityâ€based observing for social–ecological science: lessons from the Arctic. Frontiers in Ecology and the Environment, 2018, 16, S44.	4.0	9
36	Understanding Effects of Permafrost Degradation and Coastal Erosion on Civil Infrastructure in Arctic Coastal Villages: A Community Survey and Knowledge Co-Production. Journal of Marine Science and Engineering, 2022, 10, 422.	2.6	9

LILIAN ALESSA

#	Article	IF	CITATIONS
37	Aluminum toxicity studies in Vaucheria longicaulis var. macounii (Xanthophyta, Tribophyceae). I. Effects on cytoplasmic organization. Environmental and Experimental Botany, 2001, 45, 205-222.	4.2	8
38	A typology for complex social-ecological systems in mountain communities. Sustainability: Science, Practice, and Policy, 2015, 11, 1-13.	1.9	8
39	Influence of statistical methods and reference dates on describing temperature change in Alaska. Journal of Geophysical Research, 2010, 115, .	3.3	7
40	Looking to the past to shape the future: addressing social-ecological change and adaptive trade-offs. Regional Environmental Change, 2017, 17, 1205-1215.	2.9	7
41	The Role of Agent Types in Detecting and Responding to Environmental Change. Human Organization, 2012, 71, 1-10.	0.3	6
42	Themes in community resilience: A meta-synthesis of 16Âyears of Idaho Community Reviews. Community Development, 2018, 49, 65-82.	1.0	6
43	Landscape social-metabolism in food-energy-water systems: Agricultural transformation of the Upper Snake River Basin. Science of the Total Environment, 2020, 705, 135817.	8.0	6
44	Mapping human interaction with the Bering Sea ecosystem: Comparing seasonal use areas, lifetime use areas, and "calorie-sheds― Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 94, 292-300.	1.4	5
45	The role of perceptions versus instrumented data of environmental change: Responding to changing environments in Alaska. Environmental Science and Policy, 2018, 90, 110-121.	4.9	5
46	Enhancing a community-based water resource tool for assessing environmental change: the arctic water resources vulnerability index revisited. Environment Systems and Decisions, 2019, 39, 183-197.	3.4	5
47	Simulating Water, Individuals, and Management using a coupled and distributed approach. , 2014, , .		4
48	Socio-Ecological Futures: Embedded Solutions for Stakeholder-Driven Alternative Futures. Sustainability, 2022, 14, 3732.	3.2	4
49	Applying social–ecological systems science to complex mountain landscapes. Frontiers in Ecology and the Environment, 2018, 16, S3.	4.0	2
50	Surprise and Suspense: How the Intelligence Community Forgot the Future. International Journal of Intelligence, Security, and Public Affairs, 2021, 23, 310-342.	0.2	1
51	An integrated dataset for stakeholder perceptions of environmental change and instrumented measures of change. Data in Brief, 2018, 21, 1721-1723.	1.0	0