Natarajan Balasubramaniyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11121501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacologic activation of hepatic farnesoid X receptor prevents parenteral nutrition–associated cholestasis in mice. Hepatology, 2022, 75, 252-265.	7.3	13
2	Interrupting tumor necrosis factor–alpha signaling prevents parenteral nutrition–associated cholestasis in mice. Journal of Parenteral and Enteral Nutrition, 2022, 46, 1096-1106.	2.6	6
3	miR-199a-5p inhibits the Expression of ABCB11 in Obstructive Cholestasis. Journal of Biological Chemistry, 2021, 297, 101400.	3.4	1
4	Inflammation Drives MicroRNAs to Limit Hepatocyte Bile Acid Transport in Murine Biliary Atresia. Journal of Surgical Research, 2020, 256, 663-672.	1.6	3
5	Upâ€regulation of miRâ€let7aâ€5p Leads to Decreased Expression of ABCC2 in Obstructive Cholestasis. Hepatology Communications, 2019, 3, 1674-1686.	4.3	8
6	Macrophage-derived IL-11²/NF-lºB signaling mediates parenteral nutrition-associated cholestasis. Nature Communications, 2018, 9, 1393.	12.8	74
7	Nuclear factor-κB regulates the expression of multiple genes encoding liver transport proteins. American Journal of Physiology - Renal Physiology, 2016, 310, G618-G628.	3.4	31
8	Deposition of 5-Methylcytosine on Enhancer RNAs Enables the Coactivator Function of PGC-1α. Cell Reports, 2016, 14, 479-492.	6.4	129
9	CHD6 regulates the topological arrangement of the CFTR locus. Human Molecular Genetics, 2015, 24, 2724-2732.	2.9	15
10	Endotoxemia Induces lκBβ/NF-κB–Dependent Endothelin-1 Expression in Hepatic Macrophages. Journal of Immunology, 2015, 195, 3866-3879.	0.8	37
11	Identification of Functionally Relevant Lysine Residues That Modulate Human Farnesoid X Receptor Activation. Molecular Pharmacology, 2013, 83, 1078-1086.	2.3	6
12	SUMOylation of the Farnesoid X Receptor (FXR) Regulates the Expression of FXR Target Genes. Journal of Biological Chemistry, 2013, 288, 13850-13862.	3.4	60
13	Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes. American Journal of Physiology - Renal Physiology, 2012, 302, G937-G947.	3.4	42
14	Adenosine Triphosphate–Binding Cassette Subfamily C Member 2 Is the Major Transporter of the Hepatobiliary Imaging Agent ^{99m} Tc-Mebrofenin. Journal of Nuclear Medicine, 2009, 50, 1140-1146.	5.0	22
15	The membrane protein ATPase class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid X receptor. Hepatology, 2008, 48, 1896-1905.	7.3	95
16	Protein-protein interactions and membrane localization of the human organic solute transporter. American Journal of Physiology - Renal Physiology, 2007, 292, G1586-G1593.	3.4	28
17	Identification of Functionally Relevant Residues of the Rat Ileal Apical Sodium-dependent Bile Acid Cotransporter. Journal of Biological Chemistry, 2006, 281, 16410-16418.	3.4	24
18	Cytokine-dependent regulation of hepatic organic anion transporter gene transactivators in mouse liver. American Journal of Physiology - Renal Physiology, 2005, 289, G831-G841.	3.4	94

#	Article	IF	CITATIONS
19	Role of CYP27A in cholesterol and bile acid metabolism. Journal of Lipid Research, 2005, 46, 76-85.	4.2	51
20	Ligand-dependent Activation of the Farnesoid X-receptor Directs Arginine Methylation of Histone H3 by CARM1. Journal of Biological Chemistry, 2004, 279, 54348-54357.	3.4	60
21	Association of the 16-kDa Subunit c of Vacuolar Proton Pump with the Ileal Na+-dependent Bile Acid Transporter. Journal of Biological Chemistry, 2004, 279, 16295-16300.	3.4	26
22	Hypercholesterolemia and changes in lipid and bile acid metabolism in male and female cyp7A1-deficient mice. Journal of Lipid Research, 2003, 44, 1001-1009.	4.2	102
23	Status of Antioxidants in Human Carcinoma of Uterine Cervix during Radiotherapy Journal of Clinical Biochemistry and Nutrition, 1994, 17, 95-102.	1.4	0