List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11120849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Apoptosis as Driver of Therapy-Induced Cancer Repopulation and Acquired Cell-Resistance (CRAC): A Simple In Vitro Model of Phoenix Rising in Prostate Cancer. International Journal of Molecular Sciences, 2022, 23, 1152.	1.8	13
2	Editorial: Anakoinosis: An Innovative Anticancer Therapy Targeting the Aberrant Cancer Tissue Homeostasis. Frontiers in Pharmacology, 2021, 12, 779021.	1.6	2
3	Editorial: Tumor Systems Biology: How to Therapeutically Redirect Dysregulated Homeostasis in Tumor Systems (i.e., Anakoinosis). Frontiers in Oncology, 2020, 10, 1675.	1.3	0
4	Deciphering Cancer Cell Behavior From Motility and Shape Features: Peer Prediction and Dynamic Selection to Support Cancer Diagnosis and Therapy. Frontiers in Oncology, 2020, 10, 580698.	1.3	9
5	Polylactic is a Sustainable, Low Absorption, Low Autofluorescence Alternative to Other Plastics for Microfluidic and Organ-on-Chip Applications. Analytical Chemistry, 2020, 92, 6693-6701.	3.2	50
6	A Camera Sensors-Based System to Study Drug Effects on In Vitro Motility: The Case of PC-3 Prostate Cancer Cells. Sensors, 2020, 20, 1531.	2.1	5
7	A Computational Model of Tumor Growth and Anakoinosis. Frontiers in Pharmacology, 2019, 10, 287.	1.6	9
8	Learning Cancer-Related Drug Efficacy Exploiting Consensus in Coordinated Motility Within Cell Clusters. IEEE Transactions on Biomedical Engineering, 2019, 66, 2882-2888.	2.5	21
9	Anakoinosis: Correcting Aberrant Homeostasis of Cancer Tissue—Going Beyond Apoptosis Induction. Frontiers in Oncology, 2019, 9, 1408.	1.3	17
10	Clinical Efficacy of a Novel Therapeutic Principle, Anakoinosis. Frontiers in Pharmacology, 2018, 9, 1357.	1.6	26
11	Peroxisome Proliferator-Activated Receptors (PPAR)γ Agonists as Master Modulators of Tumor Tissue. International Journal of Molecular Sciences, 2018, 19, 3540.	1.8	42
12	Biomodulatory Treatment With Azacitidine, All-trans Retinoic Acid and Pioglitazone Induces Differentiation of Primary AML Blasts Into Neutrophil Like Cells Capable of ROS Production and Phagocytosis. Frontiers in Pharmacology, 2018, 9, 1380.	1.6	17
13	Cerium Oxide Nanoparticles Re-establish Cell Integrity Checkpoints and Apoptosis Competence in Irradiated HaCat Cells via Novel Redox-Independent Activity. Frontiers in Pharmacology, 2018, 9, 1183.	1.6	13
14	Lowering Etoposide Doses Shifts Cell Demise From Caspase-Dependent to Differentiation and Caspase-3-Independent Apoptosis via DNA Damage Response, Inducing AML Culture Extinction. Frontiers in Pharmacology, 2018, 9, 1307.	1.6	18
15	Uncertainty Evaluation of a VBM System for AFM Study of Cell-Cerium Oxide Nanoparticles Interactions. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 1564-1572.	2.4	8
16	Not Only Redox: The Multifaceted Activity of Cerium Oxide Nanoparticles in Cancer Prevention and Therapy. Frontiers in Oncology, 2018, 8, 309.	1.3	65
17	Slow release of etoposide from dextran conjugation shifts etoposide activity from cytotoxicity to differentiation: A promising tool for dosage control in anticancer metronomic therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2005-2014.	1.7	5
18	Cerium oxide nanoparticles inhibit differentiation of neural stem cells. Scientific Reports, 2017, 7, 9284.	1.6	65

#	Article	IF	CITATIONS
19	A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity. Scientific Reports, 2017, 7, 4636.	1.6	84
20	Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis. Nanoscale, 2015, 7, 15643-15656.	2.8	140
21	Multiparameter analysis of apoptosis in puromycin-treated Saccharomyces cerevisiae. Archives of Microbiology, 2015, 197, 773-780.	1.0	4
22	Anakoinosis: Communicative Reprogramming of Tumor Systems - for Rescuing from Chemorefractory Neoplasia. Cancer Microenvironment, 2015, 8, 75-92.	3.1	28
23	Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environmental Science: Nano, 2015, 2, 33-53.	2.2	341
24	Glutathione depletion in survival and apoptotic pathways. Frontiers in Pharmacology, 2014, 5, 267.	1.6	35
25	Biological interactions of oxide nanoparticles: The good and the evil. MRS Bulletin, 2014, 39, 949-954.	1.7	1
26	Nanoceria protects from alterations in oxidative metabolism and calcium overloads induced by TNFα and cycloheximide in U937 cells: pharmacological potential of nanoparticles. Molecular and Cellular Biochemistry, 2014, 397, 245-253.	1.4	18
27	Pharmacological potential of bioactive engineered nanomaterials. Biochemical Pharmacology, 2014, 92, 112-130.	2.0	103
28	Maturation and demise of human primary monocytes by carbon nanotubes. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	7
29	Redox modulation of the DNA damage response. Biochemical Pharmacology, 2012, 84, 1292-1306.	2.0	86
30	Ce ³⁺ lons Determine Redox-Dependent Anti-apoptotic Effect of Cerium Oxide Nanoparticles. ACS Nano, 2011, 5, 4537-4549.	7.3	335
31	Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 2011, 3, 1411.	2.8	851
32	Magnetic fields promote a pro-survival non-capacitative Ca2+ entry via phospholipase C signaling. International Journal of Biochemistry and Cell Biology, 2011, 43, 393-400.	1.2	22
33	Cerium oxide nanoparticles: a promise for applications in therapy. Journal of Experimental Therapeutics and Oncology, 2011, 9, 47-51.	0.5	75
34	Melatonin: A pleiotropic molecule regulating inflammation. Biochemical Pharmacology, 2010, 80, 1844-1852.	2.0	281
35	The Role of Cyclooxygenase-2 in Cell Proliferation and Cell Death in Human Malignancies. International Journal of Cell Biology, 2010, 2010, 1-21.	1.0	345
36	The Dual Role of Calcium as Messenger and Stressor in Cell Damage, Death, and Survival. International Journal of Cell Biology, 2010, 2010, 1-14.	1.0	135

#	Article	IF	CITATIONS
37	Multistep and multitask Bax activation. Mitochondrion, 2010, 10, 604-613.	1.6	76
38	Oxidative, multistep activation of the noncanonical NFâ€₽̂B pathway <i>via</i> disulfide Bclâ€3/p50 complex. FASEB Journal, 2009, 23, 45-57.	0.2	29
39	Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes. Toxicology and Applied Pharmacology, 2009, 239, 37-45.	1.3	58
40	Subapoptogenic Oxidative Stress Strongly Increases the Activity of the Glycolytic Key Enzyme Glyceraldehyde 3â€Phosphate Dehydrogenase. Annals of the New York Academy of Sciences, 2009, 1171, 583-590.	1.8	24
41	Effects of Carbon Nanotubes on Human Monocytes. Annals of the New York Academy of Sciences, 2009, 1171, 600-605.	1.8	11
42	Intracellular Prooxidant Activity of Melatonin Induces a Survival Pathway Involving NFâ€₽B Activation. Annals of the New York Academy of Sciences, 2009, 1171, 472-478.	1.8	53
43	Neuroprotection by Melatonin on Astrocytoma Cell Death. Annals of the New York Academy of Sciences, 2009, 1171, 509-513.	1.8	35
44	Multiple Mechanisms for Hydrogen Peroxide–Induced Apoptosis. Annals of the New York Academy of Sciences, 2009, 1171, 559-563.	1.8	29
45	Melatonin as a Modulator of Apoptosis in B‣ymphoma Cells. Annals of the New York Academy of Sciences, 2009, 1171, 345-349.	1.8	24
46	Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bclâ€⊋. Journal of Pineal Research, 2008, 44, 316-325.	3.4	110
47	Carbon nanotubes on Jurkat cells: effects on cell viability and plasma membrane potential. Journal of Physics Condensed Matter, 2008, 20, 474204.	0.7	22
48	Effect of different carbon nanotubes on cell viability and proliferation. Journal of Physics Condensed Matter, 2007, 19, 395013.	0.7	36
49	Involvement of 5-lipoxygenase in survival of Epstein–Barr virus (EBV)-converted B lymphoma cells. Cancer Letters, 2007, 254, 236-243.	3.2	19
50	Melatonin antagonizes apoptosis via receptor interaction in U937 monocytic cells. Journal of Pineal Research, 2007, 43, 154-162.	3.4	62
51	Analysis of Calcium Changes in Endoplasmic Reticulum during Apoptosis by the Fluorescent Indicator Chlortetracycline. Annals of the New York Academy of Sciences, 2007, 1099, 490-493.	1.8	6
52	Non-apoptogenic Ca2+-Related Extrusion of Mitochondria in Anoxia/Reoxygenation Stress. Annals of the New York Academy of Sciences, 2007, 1099, 512-515.	1.8	9
53	Sequential phases of Ca2+ alterations in pre-apoptotic cells. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 2207-2219.	2.2	13
54	Molecular Determinants Involved in the Increase of Damage-Induced Apoptosis and Delay of Secondary Necrosis due to Inhibition of Mono(ADP-Ribosyl)ation. Annals of the New York Academy of Sciences, 2006, 1090, 50-58.	1.8	3

#	Article	IF	CITATIONS
55	Melatonin as an Apoptosis Antagonist. Annals of the New York Academy of Sciences, 2006, 1090, 226-233.	1.8	24
56	Oxidative Upregulation of Bcl-2 in Healthy Lymphocytes. Annals of the New York Academy of Sciences, 2006, 1091, 1-9.	1.8	6
57	Intracellular Pro-oxidant Activity of Melatonin Deprives U937 Cells of Reduced Glutathione without Affecting Glutathione Peroxidase Activity. Annals of the New York Academy of Sciences, 2006, 1091, 10-16.	1.8	32
58	Different fates of intracellular glutathione determine different modalities of apoptotic nuclear vesiculation. Biochemical Pharmacology, 2006, 72, 1405-1416.	2.0	18
59	Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties. Chemistry of Materials, 2005, 17, 5255-5262.	3.2	716
60	Glutathione depletion upâ€regulates Bclâ€2 in BSOâ€resistant cells. FASEB Journal, 2004, 18, 1609-1611.	0.2	47
61	Antifungal activity of polymer-based copper nanocomposite coatings. Applied Physics Letters, 2004, 85, 2417-2419.	1.5	172
62	Cytosolic and Endoplasmic Reticulum Ca2+Concentrations Determine the Extent and the Morphological Type of Apoptosis, Respectively. Annals of the New York Academy of Sciences, 2003, 1010, 74-77.	1.8	20
63	Rescue of Cells from Apoptosis by Antioxidants Occurs Downstream from GSH Extrusion. Annals of the New York Academy of Sciences, 2003, 1010, 441-445.	1.8	13
64	Anti-apoptotic effect of HIV protease inhibitors via direct inhibition of calpain. Biochemical Pharmacology, 2003, 66, 1505-1512.	2.0	36
65	Static magnetic fields affect calcium fluxes and inhibit stress-induced apoptosis in human glioblastoma cells. Cytometry, 2002, 49, 143-149.	1.8	57
66	The tissue-specific expression of the thyroglobulin gene requires interaction between thyroid-specific and ubiquitous factors. FEBS Journal, 1990, 193, 311-318.	0.2	87
67	Drug Repurposing by Tumor Tissue Editing. Frontiers in Oncology, 0, 12, .	1.3	5