Mark A Gluck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11118794/publications.pdf

Version: 2024-02-01

112	7,095	39	81
papers	citations	h-index	g-index
113	113 docs citations	113	5059
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	From conditioning to category learning: An adaptive network model Journal of Experimental Psychology: General, 1988, 117, 227-247.	2.1	697
2	Pictures and names: Making the connection. Cognitive Psychology, 1984, 16, 243-275.	2.2	469
3	Hippocampal mediation of stimulus representation: A computational theory. Hippocampus, 1993, 3, 491-516.	1.9	453
4	Reward-learning and the novelty-seeking personality: a between- and within-subjects study of the effects of dopamine agonists on young Parkinson's patients. Brain, 2009, 132, 2385-2395.	7.6	310
5	Evaluating an adaptive network model of human learning. Journal of Memory and Language, 1988, 27, 166-195.	2.1	275
6	Intact delay-eyeblink classical conditioning in amnesia Behavioral Neuroscience, 1995, 109, 819-827.	1.2	255
7	Modeling the neural substrates of associative learning and memory: A computational approach Psychological Review, 1987, 94, 176-191.	3.8	218
8	How do People Solve the "Weather Prediction―Task?: Individual Variability in Strategies for Probabilistic Category Learning. Learning and Memory, 2002, 9, 408-418.	1.3	213
9	Dopaminergic Drugs Modulate Learning Rates and Perseveration in Parkinson's Patients in a Dynamic Foraging Task. Journal of Neuroscience, 2009, 29, 15104-15114.	3.6	213
10	Comparing modes of rule-based classification learning: A replication and extension of Shepard, Hovland, and Jenkins (1961). Memory and Cognition, 1994, 22, 352-369.	1.6	207
11	Dissociating Hippocampal versus Basal Ganglia Contributions to Learning and Transfer. Journal of Cognitive Neuroscience, 2003, 15, 185-193.	2.3	184
12	Stimulus Generalization and Representation in Adaptive Network Models of Category Learning. Psychological Science, 1991, 2, 50-55.	3.3	170
13	Explaining basic categories: Feature predictability and information Psychological Bulletin, 1992, 111, 291-303.	6.1	166
14	l-dopa impairs learning, but spares generalization, in Parkinson's disease. Neuropsychologia, 2006, 44, 774-784.	1.6	135
15	Tests of an Adaptive Network Model for the Identification and Categorization of Continuous-dimension Stimuli. Connection Science, 1994, 6, 59-89.	3.0	134
16	Nonlinear Autoassociation Is Not Equivalent to PCA. Neural Computation, 2000, 12, 531-545.	2.2	132
17	Context, conditioning, and hippocampal rerepresentation in animal learning Behavioral Neuroscience, 1994, 108, 835-847.	1.2	122
18	PSYCHOBIOLOGICAL MODELS OF HIPPOCAMPAL FUNCTION IN LEARNING AND MEMORY. Annual Review of Psychology, 1997, 48, 481-514.	17.7	102

#	Article	IF	CITATIONS
19	The role of dopamine in cognitive sequence learning: evidence from Parkinson's disease. Behavioural Brain Research, 2005, 156, 191-199.	2.2	99
20	Neural Mechanisms Underlying Probabilistic Category Learning in Normal Aging. Journal of Neuroscience, 2005, 25, 11340-11348.	3.6	95
21	Computational Models of the Neural Bases of Learning and Memory. Annual Review of Neuroscience, 1993, 16, 667-706.	10.7	92
22	Effect of the Putative Lithium Mimetic Ebselen on Brain Myo-Inositol, Sleep, and Emotional Processing in Humans. Neuropsychopharmacology, 2016, 41, 1768-1778.	5.4	85
23	Computational models of the hippocampal region: linking incremental learning and episodic memory. Trends in Cognitive Sciences, 2003, 7, 269-276.	7.8	74
24	Neural Correlates of Probabilistic Category Learning in Patients with Schizophrenia. Journal of Neuroscience, 2009, 29, 1244-1254.	3.6	69
25	Dissociating entorhinal and hippocampal involvement in latent inhibition Behavioral Neuroscience, 2000, 114, 867-874.	1.2	67
26	Hippocampal Atrophy Disrupts Transfer Generalization in Nondemented Elderly. Journal of Geriatric Psychiatry and Neurology, 2002, 15, 82-90.	2.3	61
27	Distinct Hippocampal and Basal Ganglia Contributions to Probabilistic Learning and Reversal. Journal of Cognitive Neuroscience, 2009, 21, 1820-1832.	2.3	61
28	Dissociation between medial temporal lobe and basal ganglia memory systems in schizophrenia. Schizophrenia Research, 2005, 77, 321-328.	2.0	60
29	Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment. Learning and Memory, 2011, 18, 703-711.	1.3	59
30	Strategies in probabilistic categorization: Results from a new way of analyzing performance. Learning and Memory, 2006, 13, 230-239.	1.3	58
31	Learning from negative feedback in patients with major depressive disorder is attenuated by SSRI antidepressants. Frontiers in Integrative Neuroscience, 2013, 7, 67.	2.1	58
32	Dissociation of hippocampal and entorhinal function in associative learning: A computational approach. Cognitive, Affective and Behavioral Neuroscience, 1995, 23, 116-138.	1.3	54
33	Love to Win or Hate to Lose? Asymmetry of Dopamine D2 Receptor Binding Predicts Sensitivity to Reward versus Punishment. Journal of Cognitive Neuroscience, 2014, 26, 1039-1048.	2.3	53
34	Extending Models of Hippocampal Function in Animal Conditioning to Human Amnesia. Memory, 1997, 5, 179-212.	1.7	46
35	A Neurocomputational Model of Dopamine and Prefrontal–Striatal Interactions during Multicue Category Learning by Parkinson Patients. Journal of Cognitive Neuroscience, 2011, 23, 151-167.	2.3	45
36	Sleep and the extraction of hidden regularities: A systematic review and the importance of temporal rules. Sleep Medicine Reviews, 2019, 47, 39-50.	8.5	45

#	Article	IF	CITATIONS
37	A neural model of hippocampal–striatal interactions in associative learning and transfer generalization in various neurological and psychiatric patients. Brain and Cognition, 2010, 74, 132-144.	1.8	43
38	General functioning predicts reward and punishment learning in schizophrenia. Schizophrenia Research, 2011, 127, 131-136.	2.0	42
39	Cerebellar Substrates for Error Correction in Motor Conditioning. Neurobiology of Learning and Memory, 2001, 76, 314-341.	1.9	41
40	A neurocomputational model of classical conditioning phenomena: A putative role for the hippocampal region in associative learning. Brain Research, 2009, 1276, 180-195.	2.2	39
41	Individuals with posttraumatic stress disorder show a selective deficit in generalization of associative learning Neuropsychology, 2012, 26, 758-767.	1.3	38
42	Integrating Behavioral and Biological Models of Classical Conditioning. Psychology of Learning and Motivation - Advances in Research and Theory, 1989, , 109-156.	1,1	37
43	Associative Learning, Acquired Equivalence, and Flexible Generalization of Knowledge in Mild Alzheimer Disease. Cognitive and Behavioral Neurology, 2009, 22, 89-94.	0.9	37
44	Computational cognitive models of prefrontal-striatal-hippocampal interactions in Parkinson's disease and schizophrenia. Neural Networks, 2011, 24, 575-591.	5.9	37
45	Dissociating medial temporal and basal ganglia memory systems with a latent learning task. Neuropsychologia, 2003, 41, 1919-1928.	1.6	36
46	Relative Risk of Probabilistic Category Learning Deficits in Patients with Schizophrenia and Their Siblings. Biological Psychiatry, 2010, 67, 948-955.	1.3	36
47	APOE $\hat{l}\mu 4$ status in healthy older African Americans is associated with deficits in pattern separation and hippocampal hyperactivation. Neurobiology of Aging, 2018, 69, 221-229.	3.1	36
48	Learning and generalization deficits in patients with memory impairments due to anterior communicating artery aneurysm rupture or hypoxic brain injury Neuropsychology, 2008, 22, 681-686.	1.3	35
49	How to find the way out from four rooms? The learning of "chaining―associations may shed light on the neuropsychology of the deficit syndrome of schizophrenia. Schizophrenia Research, 2008, 99, 200-207.	2.0	34
50	Associative learning in deficit and nondeficit schizophrenia. NeuroReport, 2008, 19, 55-58.	1.2	34
51	Cognitive sequence learning in Parkinson's disease and amnestic mild cognitive impairment: Dissociation between sequential and non-sequential learning of associations. Neuropsychologia, 2007, 45, 1386-1392.	1.6	33
52	Associative Learning Over Trials Activates the Hippocampus in Healthy Elderly but not Mild Cognitive Impairment. Aging, Neuropsychology, and Cognition, 2008, 15, 129-145.	1.3	33
53	Impaired context reversal learning, but not cue reversal learning, in patients with amnestic mild cognitive impairment. Neuropsychologia, 2011, 49, 3320-3326.	1.6	33
54	\hat{l}_{\pm} -Synuclein gene duplication impairs reward learning. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15992-15994.	7.1	32

#	Article	IF	CITATIONS
55	Component and pattern information in adaptive networks Journal of Experimental Psychology: General, 1990, 119, 105-109.	2.1	29
56	A connectionist model of septohippocampal dynamics during conditioning: Closing the loop Behavioral Neuroscience, 2002, 116, 48-62.	1.2	27
57	Why trace and delay conditioning are sometimes (but not always) hippocampal dependent: A computational model. Brain Research, 2013, 1493, 48-67.	2.2	27
58	Depression impairs learning, whereas the selective serotonin reuptake inhibitor, paroxetine, impairs generalization in patients with major depressive disorder. Journal of Affective Disorders, 2013, 151, 484-492.	4.1	27
59	Enhanced avoidance learning in behaviorally inhibited young men and women. Stress, 2013, 16, 289-299.	1.8	27
60	Motorâ€symptom laterality affects acquisition in Parkinson's disease: A cognitive and functional magnetic resonance imaging study. Movement Disorders, 2017, 32, 1047-1055.	3.9	26
61	Representation and Association in Memory: A Neurocomputational View of Hippocampal Function. Current Directions in Psychological Science, 1995, 4, 23-29.	5.3	25
62	Cortico-hippocampal representations in simultaneous odor discrimination: A computational interpretation of Eichenbaum, Mathews, and Cohen (1989) Behavioral Neuroscience, 1996, 110, 685-706.	1.2	25
63	The role of the orbitofrontal cortex in human discrimination learning. Neuropsychologia, 2008, 46, 1326-1337.	1.6	23
64	Impaired delay eyeblink classical conditioning in individuals with anterograde amnesia resulting from anterior communicating artery aneurysm rupture Behavioral Neuroscience, 2001, 115, 560-570.	1.2	22
65	A comparison of latent inhibition and learned irrelevance pre-exposure effects in rabbit and human eyeblink conditioning. Integrative Psychological and Behavioral Science, 2002, 37, 188-214.	0.3	22
66	Cortico-hippocampal interaction and adaptive stimulus representation: A neurocomputational theory of associative learning and memory. Neural Networks, 2005, 18, 1265-1279.	5.9	22
67	Stimulus–response learning in long-term cocaine users: Acquired equivalence and probabilistic category learning. Drug and Alcohol Dependence, 2008, 93, 155-162.	3.2	22
68	Baseline Levels of Rapid Eye Movement Sleep May Protect Against Excessive Activity in Fear-Related Neural Circuitry. Journal of Neuroscience, 2017, 37, 11233-11244.	3.6	22
69	Learning and Generalization Tasks Predict Short-Term Cognitive Outcome in Nondemented Elderly. Journal of Geriatric Psychiatry and Neurology, 2008, 21, 93-103.	2.3	21
70	Depression Impairs Learning Whereas Anticholinergics Impair Transfer Generalization in Parkinson Patients Tested on Dopaminergic Medications. Cognitive and Behavioral Neurology, 2010, 23, 98-105.	0.9	21
71	Age affects reinforcement learning through dopamine-based learning imbalance and high decision noise—not through Parkinsonian mechanisms. Neurobiology of Aging, 2018, 68, 102-113.	3.1	21
72	ABCA7 risk variant in healthy older African Americans is associated with a functionally isolated entorhinal cortex mediating deficient generalization of prior discrimination training. Hippocampus, 2019, 29, 527-538.	1.9	21

#	Article	IF	CITATIONS
73	Further implications of a computational model of septohippocampal cholinergic modulation in eyeblink conditioning. Cognitive, Affective and Behavioral Neuroscience, 1998, 26, 1-20.	1.3	21
74	The influence of sleep on emotional and cognitive processing is primarily trait- (but not state-) dependent. Neurobiology of Learning and Memory, 2016, 134, 275-286.	1.9	20
75	Selective entorhinal and nonselective cortical-hippocampal region lesions, but not selective hippocampal lesions, disrupt learned irrelevance in rabbit eyeblink conditioning. Cognitive, Affective and Behavioral Neuroscience, 2002, 2, 214-226.	2.0	18
76	Integrating behavioral and physiological models of hippocampal function., 1996, 6, 643-653.		17
77	Computational Models of the Hippocampal Region: Implications for Prediction of Risk for Alzheimers Disease in Non-demented Elderly. Current Alzheimer Research, 2006, 3, 247-257.	1.4	17
78	A computational model of mechanisms controlling experience-dependent reorganization of representational maps in auditory cortex. Cognitive, Affective and Behavioral Neuroscience, 2001, 1, 37-55.	2.0	16
79	Depression Reduces Accuracy While Parkinsonism Slows Response Time for Processing Positive Feedback in Patients with Parkinsonâ∈™s Disease with Comorbid Major Depressive Disorder Tested on a Probabilistic Category-Learning Task. Frontiers in Psychiatry, 2017, 8, 84.	2.6	16
80	Adult age differences in learning and generalization of feedback-based associations Psychology and Aging, 2013, 28, 937-947.	1.6	15
81	The Effects of APOE and ABCA7 on Cognitive Function and Alzheimer's Disease Risk in African Americans: A Focused Mini Review. Frontiers in Human Neuroscience, 2019, 13, 387.	2.0	14
82	Impaired Generalization of Associative Learning in Patients with Alcohol Dependence After Intermediate-term Abstinence. Alcohol and Alcoholism, 2012, 47, 533-537.	1.6	13
83	Transcranial Current Stimulation During Sleep Facilitates Insight into Temporal Rules, but does not Consolidate Memories of Individual Sequential Experiences. Scientific Reports, 2019, 9, 1516.	3.3	13
84	The influence of trial order on learning from reward vs. punishment in a probabilistic categorization task: experimental and computational analyses. Frontiers in Behavioral Neuroscience, 2015, 9, 153.	2.0	12
85	Generalized Anxiety Disorder and Social Anxiety Disorder, but Not Panic Anxiety Disorder, Are Associated with Higher Sensitivity to Learning from Negative Feedback: Behavioral and Computational Investigation. Frontiers in Integrative Neuroscience, 2016, 10, 20.	2.1	12
86	Recruiting Older African Americans to Brain Health and Aging Research Through Community Engagement: Lessons from the African-American Brain Health Initiative at Rutgers University-Newark. Generations, 2018, 42, 78-82.	1.0	12
87	Dissociating basal forebrain and medial temporal amnesic syndromes: Insights from classical conditioning. Integrative Psychological and Behavioral Science, 2002, 37, 85-102.	0.3	11
88	Selective hippocampal lesions disrupt a novel cue effect but fail to eliminate blocking in rabbit eyeblink conditioning. Cognitive, Affective and Behavioral Neuroscience, 2002, 2, 318-328.	2.0	11
89	Individual Differences in Slow-Wave-Sleep Predict Acquisition of Full Cognitive Maps. Frontiers in Human Neuroscience, 2018, 12, 404.	2.0	11
90	Increased dynamic flexibility in the medial temporal lobe network following an exercise intervention mediates generalization of prior learning. Neurobiology of Learning and Memory, 2021, 177, 107340.	1.9	10

#	Article	IF	CITATIONS
91	Sleep to remember, sleep to forget: Rapid eye movement sleep can have inverse effects on recall and generalization of fear memories. Neurobiology of Learning and Memory, 2021, 180, 107413.	1.9	10
92	A computational perspective on dissociating hippocampal and entorhinal function. Behavioral and Brain Sciences, 1994, 17, 476-477.	0.7	9
93	Stimulus exposure effects in human associative learning. Quarterly Journal of Experimental Psychology Section B: Comparative and Physiological Psychology, 2000, 53, 173-187.	2.8	9
94	A decrement in probabilistic category learning in cocaine users after controlling for marijuana and alcohol use Experimental and Clinical Psychopharmacology, 2014, 22, 65-74.	1.8	9
95	Deficits in hippocampalâ€dependent transfer generalization learning accompany synaptic dysfunction in a mouse model of amyloidosis. Hippocampus, 2016, 26, 455-471.	1.9	8
96	Parallel neural systems for classical conditioning: Support from computational modeling. Integrative Psychological and Behavioral Science, 2001, 36, 36-61.	0.3	7
97	Impairment of memory generalization in preclinical autosomal dominant Alzheimer's disease mutation carriers. Neurobiology of Aging, 2018, 65, 149-157.	3.1	7
98	Aging and a genetic KIBRA polymorphism interactively affect feedback- and observation-based probabilistic classification learning. Neurobiology of Aging, 2018, 61, 36-43.	3.1	7
99	A connectionist approach to processing dimensional interaction. Connection Science, 2002, 14, 1-48.	3.0	6
100	Hippocampal BOLD response during category learning predicts subsequent performance on transfer generalization. Human Brain Mapping, 2014, 35, 3122-3131.	3.6	6
101	ABCA7 Risk Genotype Diminishes the Neuroprotective Value of Aerobic Fitness in Healthy Older African Americans. Frontiers in Aging Neuroscience, 2019, 11, 73.	3.4	6
102	Amnesic patients show superior generalization in category learning Neuropsychology, 2016, 30, 915-919.	1.3	6
103	ABCA7 Genotype Moderates the Effect of Aerobic Exercise Intervention on Generalization of Prior Learning in Healthy Older African Americans. Journal of Alzheimer's Disease, 2020, 74, 309-318.	2.6	5
104	Blocking in rabbit eyeblink conditioning is not due to learned inattention: Indirect support for an error correction mechanism of blocking. Integrative Psychological and Behavioral Science, 2002, 37, 254-264.	0.3	4
105	Low body mass and high-quality sleep maximize the ability of aerobic fitness to promote improved cognitive function in older African Americans. Ethnicity and Health, 2022, 27, 909-928.	2.5	4
106	Psychobiological Models of Hippocampal Function in Learning and Memory. , 1998, , 417-448.		3
107	A dynamic model of learning in the septo-hippocampal system. Neurocomputing, 2000, 32-33, 501-507.	5.9	2
108	A model of reversal learning and working memory in medicated and unmedicated patients with Parkinson's disease. Journal of Mathematical Psychology, 2014, 59, 120-131.	1.8	2

#	Article	IF	CITATIONS
109	Age-Related Decline in Learning Deterministic Judgment-Based Sequences. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2020, 75, 961-969.	3.9	2
110	Sleep Facilitates Extraction of Temporal Regularities With Varying Timescales. Frontiers in Behavioral Neuroscience, 2022, 16, 847083.	2.0	2
111	Can procedural learning be equated with unconscious learning or rule-based learning?. Behavioral and Brain Sciences, 1994, 17, 408-409.	0.7	O
112	A Neural-Network Approach to Adaptive Similarity and Stimulus Representations in Cortico-Hippocampal Function. Advances in Psychology, 1997, 121, 220-241.	0.1	0