
Christomir Christov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11118198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical and geochemical modeling. Thermodynamic models for binary fluoride systems from low to very high concentration (> 35 m) at 298.15 K. Acta Scientifica Naturalis, 2021, 8, 1-15.	0.1	3
2	Modeling the Solution Properties and Mineral–Solution Equilibria in Radionuclide-Bearing Aqueous Nitrate Systems: Application to Binary and Ternary Systems Containing U, Th, or Lanthanides at 25 °C. Journal of Chemical & Engineering Data, 2020, 65, 3613-3626.	1.9	7
3	Modeling the Osmotic and Activity Coefficients of Lanthanide Nitrate Aqueous Solutions at 298.15 K from Low Molalities to Supersaturation. Journal of Chemical & Engineering Data, 2019, 64, 345-359.	1.9	12
4	A thermodynamic model for solution behavior and solid-liquid equilibrium in Na-K-Mg-Ca-Al(III)-Fe(III)-Cr(III)-Cl-H ₂ O system from low to very high concentration at 25°C. Acta Scientifica Naturalis, 2019, 6, 26-36.	0.1	2
5	A Pitzer Parametrization To Predict Solution Properties and Salt Solubility in the H–Na–K–Ca–Mg–NO ₃ –H ₂ O System at 298.15 K. Journal of Chemical &arr Engineering Data, 2018, 63, 787-800.	1 1 ;.9	26
6	Thermodynamic model for solution behavior and solid-liquid equilibrium in Na-Al(III)-Fe(III)-Cr(III)-Cl-H ₂ O system at 25A°C. Acta Scientifica Naturalis, 2018, 5, 6-16.	0.1	1
7	Study of bromide salts solubility in the (m1KBr+m2CaBr2)(aq) system at T=323.15K. Thermodynamic model of solution behaviour and (solid+liquid) equilibria in the ternaries (m1KBr+m2CaBr2)(aq), and (m1MgBr2+m2CaBr2)(aq), and in the quinary (Na+K+Mg+Ca+Br+H2O) systems to high concentration and temperature. Journal of Chemical Thermodynamics. 2012. 55. 7-22.	2.0	56
8	Temperature variable chemical model of bromide–sulfate solution interaction parameters and solid–liquid equilibria in the Na–K–Ca–Br–SO4–H2O system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2012, 36, 71-81.	1.6	48
9	Study of bromide salts solubility in the (m1NaBr +m2MgBr2)(aq) system at T= 323.15 K. Thermodynamic model of solution behavior and (solid + liquid) equilibria in the (Na + K + Mg + Br + H2O) system to high concentration and temperature. Journal of Chemical Thermodynamics, 2012, 47, 335-340.	2.0	54
10	Isopiestic investigation of the osmotic coefficients of aqueous CaBr2 and study of bromide salt solubility in the NaBr–CaBr2–H2O system at 50° C : Thermodynamic model of solution behavior and solid–liquid equilibria in the CaBr2–H2O, and NaBr–CaBr2–H2O systems to high concentration and temperature. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35, 42-53.	1.6	46
11	Isopiestic investigation of the osmotic coefficients of MgBr2(aq) and study of bromide salts solubility in the (m1KBr+m2MgBr2)(aq) system at T=323.15K. Thermodynamic model of solution behaviour and (solid+liquid) equilibria in the MgBr2(aq), and (m1KBr+m2MgBr2)(aq) systems to high concentration and temperature, Journal of Chemical Thermodynamics, 2011, 43, 344-353	2.0	52
12	and temperature. Journal of Chanical Thermodynamics, 2011, 43, 344-353. Chemical Equilibrium Model of Solution Behavior and Bishofite (MgCl ₂ ·6H ₂ O(cr)) and Hydrogenâ°Carnallite (HCl·MgCl ₂ ·7H ₂ O(cr)) Solubility in the MgCl ₂ + H ₂ O and HClâ°MgCl ₂ + H ₂ O Systems to High Acid Concentration at (0 to 100) °C.	1.9	32
13	isopres of Determination of Enginesmog Decent2000c5 of 2624Q0600s MgCl ₂ + CaCl ₂ Mixed Solution at (25 and 50) ŰC. Chemical Equilibrium Model of Solution Behavior and Solubility in the MgCl ₂ + H ₂ O and MgCl ₂ + CaCl ₂ + H ₂ O Systems to High Concentration at (25 and 50) ŰC. Journal of Chemical & amp;	1.9	49
14	Engineering Data, 2009, 54, 627-635. An isopiestic study of aqueous NaBr and KBr at 50°C: Chemical equilibrium model of solution behavior and solubility in the NaBr–H2O, KBr–H2O and Na–K–Br–H2O systems to high concentration and temperature. Geochimica Et Cosmochimica Acta, 2007, 71, 3557-3569.	3.9	79
15	Thermodynamic Modeling of Aqueous Aluminum Chemistry and Solid-Liquid Equilibria to High Solution Concentration and Temperature. I. The Acidic H-Al-Na-K-Cl-H2O System from 0 to 100 °C. Journal of Solution Chemistry, 2007, 36, 1495-1523.	1.2	39
16	Thermodynamics of formation of double salts and mixed crystals from aqueous solutions. Journal of Chemical Thermodynamics, 2005, 37, 1036-1060.	2.0	76
17	Thermodynamics of Formation of Double Salts and Mixed Crystals from Aqueous Solutions. ChemInform, 2005, 36, no.	0.0	0
18	Pitzer ion-interaction parameters for Fe(II) and Fe(III) in the quinary {Na+K+Mg+Cl+SO4+H2O} system at T=298.15 K. Journal of Chemical Thermodynamics. 2004.36.223-235	2.0	40

#	Article	IF	CITATIONS
19	Chemical equilibrium model of solution behavior and solubility in the H-Na-K-OH-Cl-HSO 4 -SO 4 -H 2 O system to high concentration and temperature 1 1Associate editor: D. J. Wesolowski. Geochimica Et Cosmochimica Acta, 2004, 68, 1309-1331.	3.9	107
20	A chemical equilibrium model of solution behavior and solubility in the H-Na-K-Ca-OH-Cl-HSO4-SO4-H2O system to high concentration and temperature. Geochimica Et Cosmochimica Acta, 2004, 68, 3717-3739.	3.9	110
21	Thermodynamics of formation of double salts M2SO4·M′SO4·6H2O and M2SeO4·M′SeO4·6H2O wher denotes Rb, or Cs and M′ denote Co, Ni, or Zn. Journal of Chemical Thermodynamics, 2003, 35, 1775-1792.	re M 2.0	10
22	Thermodynamic study of aqueous rubidium and cobalt selenate system at the temperature 298.15K. Journal of Chemical Thermodynamics, 2003, 35, 689-697.	2.0	5
23	Thermodynamic study of the aqueous sodium, potassium, and chromium chloride systems at the temperature 298.15K. Journal of Chemical Thermodynamics, 2003, 35, 909-917.	2.0	9
24	Thermodynamic study of the co-crystallization of ammonium, sodium and potassium alums and chromium alums. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2003, 27, 153-160.	1.6	12
25	Thermodynamics of formation of ammonium, sodium and potassium alums and chromium alums. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2002, 26, 85-94.	1.6	28
26	Thermodynamic study of quaternary systems with participation of ammonium and sodium alums and chromium alums. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2002, 26, 341-352.	1.6	28
27	Thermodynamic study of aqueous sodium and potassium chloride and chromate systems at the temperature 298.15 K. Journal of Chemical Thermodynamics, 2002, 34, 987-994.	2.0	13
28	Thermodynamic study of the NaCl î—, Na2SO4 î—, Na2Cr2O7 î—, H2O system at the temperature 298.15 K. Calph Computer Coupling of Phase Diagrams and Thermochemistry, 2001, 25, 11-17.	ad: 1.6	19
29	Thermodynamic study of the Kî—,Mgî—,Alî—,Clî—,SO4î—,H2O system at the temperature 298.15 K. Calphad: Comp Coupling of Phase Diagrams and Thermochemistry, 2001, 25, 445-454.	outer 1.er	33
30	Thermodynamic study of (m1Cs2SeO4+m2NiSeO4)(aq)wheremdenotes molality atT= 298.15 K. Journal of Chemical Thermodynamics, 2001, 33, 1073-1080.	2.0	12
31	Thermodynamic study of the Na-Cu-Cl-SO4- H2O system at the temperature 298.15 K. Journal of Chemical Thermodynamics, 2000, 32, 285-295.	2.0	28
32	Study of (m1LiX+m2CaX2)(aq) wheremidenotes molality andXdenotes Cl, or Br at the temperature 298.15 K. Journal of Chemical Thermodynamics, 2000, 32, 1505-1512.	2.0	34
33	Thermodynamic Study of Na2Cr2O7(aq) at 25 °C. Collection of Czechoslovak Chemical Communications, 1999, 64, 595-599.	1.0	10
34	Thermodynamic Study on Aqueous Solutionsof (NH4)2SeO4 and K2SeO4 at 298.15 K. Monatshefte Für Chemie, 1999, 130, 1061-1065.	1.8	6
35	Study of (m1KCl+m2MeCl2)(aq) and (m1K2SO4+m2MeSO4)(aq) wheremdenotes molality and Me denotes Cu, or Ni at the temperature 298.15 K. Journal of Chemical Thermodynamics, 1999, 31, 71-83.	2.0	20

#	Article	IF	CITATIONS
37	Thermodynamic study of (m1Na2SeO4+m2NiSeO4)(aq) wheremdenotes molality at the temperature 298.15 K. Journal of Chemical Thermodynamics, 1998, 30, 73-79.	2.0	6
38	Thermodynamic study of the KCl-K2SO4-K2Cr2O7-H2O system at the temperature 298.15 K. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1998, 22, 449-457.	1.6	24
39	Investigation of the Aqueous Lithium and Nickel Selenate System. Zeitschrift Fur Physikalische Chemie, 1998, 203, 87-93.	2.8	6
40	Thermodynamics of the formation of solid solutions of the type (Me,Me′)SeO4·6H2O where Me and Me′ denote Mg, Co, Ni, or Zn from aqueous solutions. Journal of Chemical Thermodynamics, 1997, 29, 481-489.	2.0	9
41	Thermodynamic Study of the CuCl2-MCl2-H2O Systems (M = Mg, Co) at 298.15 K. Collection of Czechoslovak Chemical Communications, 1996, 61, 507-511.	1.0	7
42	Thermodynamics of the aqueous sodium and magnesium bromide system at the temperatures 273.15 K and 298.15 K. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1996, 20, 501-509.	1.6	34
43	A Simplified Model for Calculation of the Gibbs Energy of Mixing in Crystals: Thermodynamic Theory, Restrictions and Applicability. Collection of Czechoslovak Chemical Communications, 1996, 61, 1585-1599.	1.0	17
44	Thermodynamics of Formation of Double Salts in the Systems CsClȔMCl2—H2O where M Denotes Mn, Co, or Cu. Zeitschrift Fur Physikalische Chemie, 1996, 194, 43-50.	2.8	10
45	Thermodynamic study of the co-crystallization of 2RbCl·NiCl2·2H2O and 2RbCl·MnCl2·2H2O, at the temperature 298.15 K. Journal of Chemical Thermodynamics, 1996, 28, 743-752.	2.0	9
46	Pitzer Model Based Study of CsX-NiX2-H2O (X = Cl, Br) Systems at 298.15 K. Collection of Czechoslovak Chemical Communications, 1996, 61, 501-506.	1.0	7
47	Isodimorphic co-crystallization of isostructural ammonium chloro- and bromo-carnallites. Journal of Chemical Thermodynamics, 1995, 27, 435-441.	2.0	4
48	Discontinuities in the mixed-crystal series of isostructural carnallite-type double salts. Journal of Chemical Thermodynamics, 1995, 27, 821-828.	2.0	8
49	Thermodynamic study of (b1LiBr +b2MgBr2)(aq), wherebdenotes molality, at the temperature 348.15K. Journal of Chemical Thermodynamics, 1995, 27, 1267-1273.	2.0	26
50	Study of the Conversion of CaSO4 to CaCO3 within the CaSO4 + Na2CO3 = CaCO3 + Na2SO4 Four-Component Water-Salt System. Collection of Czechoslovak Chemical Communications, 1995, 60, 2107-2111.	1.0	9
51	Thermodynamic study of (b1RbCl + b2MeCl2)(aq), where b denotes molality and Me denotes Mn, Co, Ni, or Cu, at the temperature 298.15 K, on the basis of Pitzer's model. Journal of Chemical Thermodynamics, 1994, 26, 1071-1080.	2.0	22
52	Effect of Temperature on the Solubility Diagrams of Ammonium Bromcarnallite. Collection of Czechoslovak Chemical Communications, 1994, 59, 1620-1623.	1.0	3
53	Isomorphic Co-Crystallization of Ammonium and Rubidium Bromocarnallites. Collection of Czechoslovak Chemical Communications, 1994, 59, 1815-1819.	1.0	5
54	Development of accurate chemical thermodynamic database for geochemical storage of nuclear waste. Part II: Models for predicting solution properties and solid-liquid equilibrium in binary nitrate systems. BioRisk, 0, 17, 389-406.	0.2	1

#	Article	IF	CITATIONS
55	Development of accurate chemical thermodynamic database for geochemical storage of nuclear waste. Part III: Models for predicting solution properties and solid-liquid equilibrium in cesium binary and mixed systems. BioRisk, 0, 17, 407-422.	0.2	1