Zichun Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11118156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manipulating the Crystalline Morphology in the Nonfullerene Acceptor Mixture to Improve the Carrier Transport and Suppress the Energetic Disorder. Small Science, 2022, 2, 2100092.	5.8	5
2	Correlating Electronic Structure and Device Physics with Mixing Region Morphology in Highâ€Efficiency Organic SolarÂCells. Advanced Science, 2022, 9, e2104613.	5.6	10
3	Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nature Materials, 2022, 21, 656-663.	13.3	1,214
4	Molecular Electron Acceptor Designed by Modulating Quinoidal-Resonance Effect for Organic Solar Cell Application. Bulletin of the Chemical Society of Japan, 2021, 94, 929-936.	2.0	2
5	Manipulating Crystallization Kinetics of Conjugated Polymers in Nonfullerene Photovoltaic Blends toward Refined Morphologies and Higher Performances. Macromolecules, 2021, 54, 4030-4041.	2.2	16
6	Mapping the Side-Chain Length of Small-Molecule Acceptors towards the Optimal Hierarchical Morphology in Ternary Organic Solar Cells. Organic Materials, 2021, 03, 191-197.	1.0	0
7	Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Twoâ€inâ€One Strategy. Advanced Materials, 2021, 33, e2100830.	11.1	323
8	Subtle Molecular Tailoring Induces Significant Morphology Optimization Enabling over 16% Efficiency Organic Solar Cells with Efficient Charge Generation. Advanced Materials, 2020, 32, e1906324.	11.1	312
9	Modulating Structure Ordering via Side-Chain Engineering of Thieno[3,4- <i>b</i>]thiophene-Based Electron Acceptors for Efficient Organic Solar Cells with Reduced Energy Losses. ACS Applied Materials & Interfaces, 2019, 11, 35193-35200.	4.0	7
10	13.7% Efficiency Smallâ€Molecule Solar Cells Enabled by a Combination of Material and Morphology Optimization. Advanced Materials, 2019, 31, e1904283.	11.1	111
11	Aggregationâ€Induced Multilength Scaled Morphology Enabling 11.76% Efficiency in Allâ€Polymer Solar Cells Using Printing Fabrication. Advanced Materials, 2019, 31, e1902899.	11.1	270
12	Cathode interfacial layer-free all small-molecule solar cells with efficiency over 12%. Journal of Materials Chemistry A, 2019, 7, 15944-15950.	5.2	36
13	High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nature Energy, 2018, 3, 952-959.	19.8	558
14	Design of a New Fusedâ€Ring Electron Acceptor with Excellent Compatibility to Wideâ€Bandgap Polymer Donors for Highâ€Performance Organic Photovoltaics. Advanced Materials, 2018, 30, e1800403.	11.1	169
15	Design and synthesis of medium-bandgap small-molecule electron acceptors for efficient tandem solar cells. Journal of Materials Chemistry A, 2018, 6, 13588-13592.	5.2	16
16	Applying the heteroatom effect of chalcogen for high-performance small-molecule solar cells. Journal of Materials Chemistry A, 2017, 5, 3425-3433.	5.2	14
17	1,3-Bis(thieno[3,4- <i>b</i>]thiophen-6-yl)-4 <i>H</i> -thieno[3,4- <i>c</i>]pyrrole-4,6(5 <i>H</i>)-dione-Based Small-Molecule Donor for Efficient Solution-Processed Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 6213-6219.	4.0	20
18	Efficient Semitransparent Solar Cells with High NIR Responsiveness Enabled by a Smallâ€Bandgap Electron Acceptor. Advanced Materials, 2017, 29, 1606574.	11.1	252

ZICHUN ZHOU

#	Article	IF	CITATIONS
19	A Twisted Thieno[3,4â€ <i>b</i>]thiopheneâ€Based Electron Acceptor Featuring a 14â€ï€â€Electron Indenoinden Core for Highâ€Performance Organic Photovoltaics. Advanced Materials, 2017, 29, 1704510.	e _{11.1}	196
20	Stericâ€Hindrance Modulation toward Highâ€Performance 1,3â€Bis(thieno[3,4â€ <i>b</i>]thiophenâ€6â€yl)â€4 <i>H</i> â€thieno[3,4â€ <i>c</i>]pyrroleâ€4,6(5 <i>H</i>)â€ Polymer Solar Cells with Enhanced Openâ€Circuit Voltage. Advanced Electronic Materials, 2017, 3, 1700213.	dioneâ€B 2.6	ased
21	A thieno[3,4-b]thiophene-based small-molecule donor with a ï€-extended dithienobenzodithiophene core for efficient solution-processed organic solar cells. Materials Chemistry Frontiers, 2017, 1, 2349-2355.	3.2	8
22	Poly(3-hexylthiophene)-based non-fullerene solar cells achieve high photovoltaic performance with small energy loss. Journal of Materials Chemistry A, 2017, 5, 16573-16579.	5.2	37
23	A Thieno[3,4- <i>b</i>]thiophene-Based Non-fullerene Electron Acceptor for High-Performance Bulk-Heterojunction Organic Solar Cells. Journal of the American Chemical Society, 2016, 138, 15523-15526.	6.6	286
24	An electron-rich 2-alkylthieno[3,4-b]thiophene building block with excellent electronic and morphological tunability for high-performance small-molecule solar cells. Journal of Materials Chemistry A, 2016, 4, 17354-17362.	5.2	35