
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11116596/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electroanalytical overview: screen-printed electrochemical sensing platforms for the detection of vital cardiac, cancer and inflammatory biomarkers. Sensors & Diagnostics, 2022, 1, 405-428.	1.9	20
2	Electroanalytical overview: The determination of manganese. Sensors and Actuators Reports, 2022, 4, 100110.	2.3	6
3	Disposable non-enzymatic electrochemical glucose sensors based on screen-printed graphite macroelectrodes modified <i>via</i> a facile methodology with Ni, Cu, and Ni/Cu hydroxides are shown to accurately determine glucose in real human serum blood samples. Analytical Methods, 2021, 13. 2812-2822.	1.3	19
4	Graphene Matrices as Carriers for Metal lons against Antibiotic Susceptible and Resistant Bacterial Pathogens. Coatings, 2021, 11, 352.	1.2	7
5	Toward the Rapid Diagnosis of Sepsis: Detecting Interleukin-6 in Blood Plasma Using Functionalized Screen-Printed Electrodes with a Thermal Detection Methodology. Analytical Chemistry, 2021, 93, 5931-5938.	3.2	31
6	Approaches to the Rational Design of Molecularly Imprinted Polymers Developed for the Selective Extraction or Detection of Antibiotics in Environmental and Food Samples. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100021.	0.8	15
7	Additive manufactured graphene-based electrodes exhibit beneficial performances in Pseudomonas aeruginosa microbial fuel cells. Journal of Power Sources, 2021, 499, 229938.	4.0	15
8	Electroanalytical overview: utilising micro- and nano-dimensional sized materials in electrochemical-based biosensing platforms. Mikrochimica Acta, 2021, 188, 268.	2.5	28
9	The development of carbon dots: From the perspective of materials chemistry. Materials Today, 2021, 51, 188-207.	8.3	213
10	Evaluating the Possibility of Translating Technological Advances in Non-Invasive Continuous Lactate Monitoring into Critical Care. Sensors, 2021, 21, 879.	2.1	8
11	Sensing Materials: Carbon Materials. , 2021, , .		0
12	Electrochemical Improvements Can Be Realized via Shortening the Length of Screen-Printed Electrochemical Platforms. Analytical Chemistry, 2021, 93, 16481-16488.	3.2	29
13	Electrochemical properties of vertically aligned graphenes: tailoring heterogeneous electron transfer through manipulation of the carbon microstructure. Nanoscale Advances, 2020, 2, 5319-5328.	2.2	10
14	Recent advances in portable heavy metal electrochemical sensing platforms. Environmental Science: Water Research and Technology, 2020, 6, 2676-2690.	1.2	99
15	Determination of tadalafil in pharmaceutical samples by vertically oriented multi-walled carbon nanotube electrochemical sensing device. Journal of Electroanalytical Chemistry, 2020, 877, 114501.	1.9	12
16	Molecularly imprinted polymer based electrochemical biosensors: Overcoming the challenges of detecting vital biomarkers and speeding up diagnosis. Talanta Open, 2020, 2, 100018.	1.7	92
17	An Overview of Recent Electroanalytical Applications Utilizing Screenâ€Printed Electrodes Within Flow Systems. ChemElectroChem, 2020, 7, 2211-2221.	1.7	39
18	The influence of lateral flake size in graphene/graphite paste electrodes: an electroanalytical investigation. Analytical Methods, 2020, 12, 2133-2142.	1.3	10

#	Article	IF	CITATIONS
19	Investigating the Integrity of Graphene towards the Electrochemical Hydrogen Evolution Reaction (HER). Scientific Reports, 2019, 9, 15961.	1.6	36
20	Exploring the reactivity of distinct electron transfer sites at CVD grown monolayer graphene through the selective electrodeposition of MoO2 nanowires. Scientific Reports, 2019, 9, 12814.	1.6	11
21	Pseudo Cavity of Schiff Base Ionophore Incorporated in Screen Printed Electrode for Sensing of Zn (II). Journal of the Electrochemical Society, 2019, 166, B464-B471.	1.3	4
22	Nanodiamond based surface modified screen-printed electrodes for the simultaneous voltammetric determination of dopamine and uric acid. Mikrochimica Acta, 2019, 186, 200.	2.5	46
23	Graphene Quantum Dots Modified Screenâ€printed Electrodes as Electroanalytical Sensing Platform for Diethylstilbestrol. Electroanalysis, 2019, 31, 838-843.	1.5	27
24	Nextâ€Generation Additive Manufacturing of Complete Standalone Sodiumâ€Ion Energy Storage Architectures. Advanced Energy Materials, 2019, 9, 1803019.	10.2	48
25	Niâ~'Fe (Oxy)hydroxide Modified Graphene Additive Manufactured (3Dâ€Printed) Electrochemical Platforms as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 5633-5641.	1.7	32
26	Microbial fuel cells: An overview of current technology. Renewable and Sustainable Energy Reviews, 2019, 101, 60-81.	8.2	473
27	Enhanced reversible redox activity of hemin on cellulose microfiber integrated reduced graphene oxide for H2O2 biosensor applications. Carbohydrate Polymers, 2019, 204, 152-160.	5.1	34
28	Fast Determination of Antioxidant Capacity of Food Samples Using Continuous Amperometric Detection on Polyester Screenâ€printed Graphitic Electrodes. Electroanalysis, 2018, 30, 1192-1197.	1.5	6
29	Antimicrobial activity of Ti-ZrN/Ag coatings for use in biomaterial applications. Scientific Reports, 2018, 8, 1497.	1.6	16
30	Use of Screenâ€printed Electrodes Modified by Prussian Blue and Analogues in Sensing of Cysteine. Electroanalysis, 2018, 30, 170-179.	1.5	33
31	An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Applied Materials Today, 2018, 10, 218-226.	2.3	255
32	Simultaneous determination of codeine and its co-formulated drugs acetaminophen and caffeine by utilising cerium oxide nanoparticles modified screen-printed electrodes. Sensors and Actuators B: Chemical, 2018, 259, 142-154.	4.0	59
33	A reduced graphene oxide-cyclodextrin-platinum nanocomposite modified screen printed electrode for the detection of cysteine. Journal of Electroanalytical Chemistry, 2018, 829, 230-240.	1.9	33
34	Graphene-Based Electrochemical Sensors. Springer Series on Chemical Sensors and Biosensors, 2018, , 141-164.	0.5	2
35	Novel electrochemical synthesis of copper oxide nanoparticles decorated graphene-Î ² -cyclodextrin composite for trace-level detection of antibiotic drug metronidazole. Journal of Colloid and Interface Science, 2018, 530, 37-45.	5.0	43
36	Exploring the electrochemical performance of graphite and graphene paste electrodes composed of varying lateral flake sizes. Physical Chemistry Chemical Physics, 2018, 20, 20010-20022.	1.3	35

#	Article	IF	CITATIONS
37	Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms. Biosensors, 2018, 8, 53.	2.3	252
38	Advanced Hierarchical Vesicular Carbon Coâ€Doped with S, P, N for Highâ€Rate Sodium Storage. Advanced Science, 2018, 5, 1800241.	5.6	225
39	Simultaneous Voltammetric Determination of Acetaminophen and Isoniazid (Hepatotoxicity-Related) Tj ETQq1 1 Analytical Chemistry, 2017, 89, 2170-2178.	0.784314 3.2	rgBT /Ove 130
40	Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): role of surfactant upon the electrochemical reduction of oxygen and capacitance applications. Journal of Materials Chemistry A, 2017, 5, 4103-4113.	5.2	48
41	3D Printed Graphene Based Energy Storage Devices. Scientific Reports, 2017, 7, 42233.	1.6	345
42	Portable electrochemical system using screen-printed electrodes for monitoring corrosion inhibitors. Talanta, 2017, 174, 420-427.	2.9	14
43	Calixarene bulk modified screen-printed electrodes (SPCCEs) as a one-shot disposable sensor for the simultaneous detection of lead(II), copper(II) and mercury(II) ions: Application to environmental samples. Sensors and Actuators A: Physical, 2017, 267, 517-525.	2.0	51
44	Graphene oxide electrochemistry: the electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis. Royal Society Open Science, 2017, 4, 171128.	1.1	55
45	Schiff base modified screen printed electrode for selective determination of aluminium(III) at trace level. Sensors and Actuators B: Chemical, 2017, 239, 17-27.	4.0	50
46	2D Hexagonal Boron Nitride (2Dâ€hBN) Explored as a Potential Electrocatalyst for the Oxygen Reduction Reaction. Electroanalysis, 2017, 29, 622-634.	1.5	50
47	Screen-Printed Graphite Electrodes as Low-Cost Devices for Oxygen Gas Detection in Room-Temperature Ionic Liquids. Sensors, 2017, 17, 2734.	2.1	15
48	Pencil It in: Exploring the Feasibility of Hand-Drawn Pencil Electrochemical Sensors and Their Direct Comparison to Screen-Printed Electrodes. Biosensors, 2016, 6, 45.	2.3	40
49	Introducing Thermal Wave Transport Analysis (TWTA): A Thermal Technique for Dopamine Detection by Screen-Printed Electrodes Functionalized with Molecularly Imprinted Polymer (MIP) Particles. Molecules, 2016, 21, 552.	1.7	32
50	2D molybdenum disulphide (2D-MoS ₂) modified electrodes explored towards the oxygen reduction reaction. Nanoscale, 2016, 8, 14767-14777.	2.8	83
51	Incorporating Graphene into Fuel Cell Design. Nanoscience and Technology, 2016, , 293-312.	1.5	0
52	Electroanalytical sensing of the antimicrobial drug linezolid utilising an electrochemical sensing platform based upon a multiwalled carbon nanotubes/bromocresol green modified carbon paste electrode. Analytical Methods, 2016, 8, 4345-4353.	1.3	36
53	2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine. Analytical Chemistry, 2016, 88, 9729-9737.	3.2	155
54	Defining the origins of electron transfer at screen-printed graphene-like and graphite electrodes: MoO ₂ nanowire fabrication on edge plane sites reveals electrochemical insights. Nanoscale, 2016, 8, 15241-15251.	2.8	28

#	Article	IF	CITATIONS
55	Grapheneâ€Rich Wrapped Petalâ€Like Rutile TiO ₂ tuned by Carbon Dots for Highâ€Performance Sodium Storage. Advanced Materials, 2016, 28, 9391-9399.	11.1	262
56	Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels. Analytica Chimica Acta, 2016, 934, 1-8.	2.6	24
57	Pencil it in: pencil drawn electrochemical sensing platforms. Analyst, The, 2016, 141, 4055-4064.	1.7	49
58	High temperature low vacuum synthesis of a freestanding three-dimensional graphene nano-ribbon foam electrode. Journal of Materials Chemistry A, 2016, 4, 2617-2629.	5.2	19
59	Utilising copper screen-printed electrodes (CuSPE) for the electroanalytical sensing of sulfide. Analyst, The, 2016, 141, 1233-1238.	1.7	15
60	Forensic electrochemistry: simultaneous voltammetric detection of MDMA and its fatal counterpart "Dr Death―(PMA). Analytical Methods, 2016, 8, 142-152.	1.3	51
61	Can the mechanical activation (polishing) of screen-printed electrodes enhance their electroanalytical response?. Analyst, The, 2016, 141, 2791-2799.	1.7	65
62	Screen-Printing Electrochemical Architectures. SpringerBriefs in Applied Sciences and Technology, 2016, , .	0.2	11
63	Introduction and Current Applications of Screen-Printed Electrochemical Architectures. SpringerBriefs in Applied Sciences and Technology, 2016, , 1-12.	0.2	1
64	Backâ€ŧoâ€Back Screenâ€Printed Electroanalytical Sensors: Extending the Potential Applications of the Simplistic Design. Electroanalysis, 2015, 27, 2295-2301.	1.5	20
65	Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodiumâ€lon Batteries with Ultralong Cycle Life. Advanced Materials, 2015, 27, 7861-7866.	11.1	1,055
66	Exploring the electrical wiring of screen-printed configurations utilised in electroanalysis. Analytical Methods, 2015, 7, 1208-1214.	1.3	42
67	Carbon dots supported upon N-doped TiO ₂ nanorods applied into sodium and lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 5648-5655.	5.2	215
68	Electroanalytical detection of pindolol: comparison of unmodified and reduced graphene oxide modified screen-printed graphite electrodes. Analyst, The, 2015, 140, 1543-1550.	1.7	38
69	Quantification of corrosion inhibitors used in the water industry for steam condensate treatment: the indirect electroanalytical sensing of morpholine and cyclohexylamine. Environmental Science: Water Research and Technology, 2015, 1, 40-46.	1.2	7
70	A new approach for the improved interpretation of capacitance measurements for materials utilised in energy storage. RSC Advances, 2015, 5, 12782-12791.	1.7	79
71	Regal electrochemistry: sensing of the synthetic cathinone class of new psychoactive substances (NPSs). Analytical Methods, 2015, 7, 6470-6474.	1.3	33
72	Detection and quantification of new psychoactive substances (NPSs) within the evolved "legal high― product, NRG-2, using high performance liquid chromatography-amperometric detection (HPLC-AD). Analyst, The, 2015, 140, 6283-6294.	1.7	20

#	Article	IF	CITATIONS
73	Forensic electrochemistry: indirect electrochemical sensing of the components of the new psychoactive substance "Synthacaineâ€. Analyst, The, 2015, 140, 5536-5545.	1.7	27
74	Screen-printed back-to-back electroanalytical sensors: heavy metal ion sensing. Analyst, The, 2015, 140, 4130-4136.	1.7	47
75	In situ electrochemical characterisation of graphene and various carbon-based electrode materials: an internal standard approach. RSC Advances, 2015, 5, 37281-37286.	1.7	57
76	2D nanosheet molybdenum disulphide (MoS ₂) modified electrodes explored towards the hydrogen evolution reaction. Nanoscale, 2015, 7, 18152-18168.	2.8	104
77	The latest developments in the analytical sensing of methane. TrAC - Trends in Analytical Chemistry, 2015, 73, 146-157.	5.8	37
78	Imparting improvements in electrochemical sensors: evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms. Electrochimica Acta, 2015, 157, 125-133.	2.6	120
79	The latest developments in quantifying cyanide and hydrogen cyanide. TrAC - Trends in Analytical Chemistry, 2015, 64, 75-85.	5.8	82
80	Metallic Impurities in Graphene Screenâ€Printed Electrodes Can Influence Their Electrochemical Properties. Electroanalysis, 2014, 26, 2429-2433.	1.5	17
81	The Electrochemistry of Graphene. , 2014, , 79-126.		3
82	Graphene Applications. , 2014, , 127-174.		3
83	Introduction to Graphene. , 2014, , 1-22.		4
84	Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid–liquid microextraction for determination of 2,4,6-trinitrotoluene. Analytical and Bioanalytical Chemistry, 2014, 406, 2197-2204.	1.9	31
85	The Oxygen Reduction Reaction at Graphene Modified Electrodes. Electroanalysis, 2014, 26, 76-83.	1.5	49
86	Forensic electrochemistry: the electroanalytical sensing of synthetic cathinone-derivatives and their accompanying adulterants in "legal high―products. Analyst, The, 2014, 139, 389-400.	1.7	71
87	The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes. Physical Chemistry Chemical Physics, 2014, 16, 4598.	1.3	143
88	Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene. Nanoscale, 2014, 6, 1607-1621.	2.8	177
89	Screen-printed back-to-back electroanalytical sensors. Analyst, The, 2014, 139, 5339-5349.	1.7	30
90	Green electrochemical sensing platforms: utilizing hydroxyapatite derived from natural fish scales as a novel electrochemical material for the sensitive detection of kidney injury molecule 1 (KIM-1). Analyst, The, 2014, 139, 5362-5366.	1.7	18

#	Article	IF	CITATIONS
91	Ultraflexible Screenâ€Printed Graphitic Electroanalytical Sensing Platforms. Electroanalysis, 2014, 26, 262-274.	1.5	69
92	Electroanalytical Performance of a Freestanding Threeâ€Đimensional Graphene Foam Electrode. Electroanalysis, 2014, 26, 93-102.	1.5	26
93	Forensic Electrochemistry Applied to the Sensing of New Psychoactive Substances: Electroanalytical Sensing of Synthetic Cathinones and Analytical Validation in the Quantification of Seized Street Samples. Analytical Chemistry, 2014, 86, 9985-9992.	3.2	76
94	A decade of graphene research: production, applications and outlook. Materials Today, 2014, 17, 426-432.	8.3	519
95	The Handbook of Graphene Electrochemistry. , 2014, , .		151
96	Voltammetric behaviour of free DNA bases, methylcytosine and oligonucleotides at disposable screen printed graphite electrode platforms. Analyst, The, 2013, 138, 5239.	1.7	33
97	Inexpensive and disposable copper mini-sensor modified with bismuth for lead and cadmium determination using square-wave anodic stripping voltammetry. Analytical Methods, 2013, 5, 202-207.	1.3	51
98	Electrochemically triggered graphene sheets through cathodic exfoliation for lithium ion batteries anodes. RSC Advances, 2013, 3, 16130.	1.7	18
99	Forensic electrochemistry: the electroanalytical sensing of Rohypnol® (flunitrazepam) using screen-printed graphite electrodes without recourse for electrode or sample pre-treatment. Analyst, The, 2013, 138, 6185.	1.7	71
100	Screen-printed palladium electroanalytical sensors. Journal of Solid State Electrochemistry, 2013, 17, 1553-1562.	1.2	26
101	The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes. Physical Chemistry Chemical Physics, 2013, 15, 15098.	1.3	34
102	Exploring the electrochemical performance of graphitic paste electrodes: graphene vs. graphite. Analyst, The, 2013, 138, 6354.	1.7	33
103	Screen printed graphite electrochemical sensors for the voltammetric determination of antimony(iii). Analytical Methods, 2013, 5, 3490.	1.3	27
104	Room temperature ionic liquid assisted well-dispersed core-shell tin nanoparticles through cathodic corrosion. RSC Advances, 2013, 3, 18791.	1.7	47
105	Paper-based electroanalytical sensing platforms. Analytical Methods, 2013, 5, 103-110.	1.3	85
106	Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Analytical Methods, 2013, 5, 1098.	1.3	504
107	Forensic electrochemistry: sensing the molecule of murder atropine. Analyst, The, 2013, 138, 1053.	1.7	46
108	Screen Printed Electrodes Open New Vistas in Sensing: Application to Medical Diagnosis. Modern Aspects of Electrochemistry, 2013, , 83-120.	0.2	2

#	Article	IF	CITATIONS
109	Graphene ultracapacitors: structural impacts. Physical Chemistry Chemical Physics, 2013, 15, 4799.	1.3	57
110	The fabrication of novel screen printed single-walled carbon nanotube electrodes: Electroanalytical applications. Sensors and Actuators B: Chemical, 2013, 177, 1043-1052.	4.0	49
111	Electrochemical impedance spectroscopy versus cyclic voltammetry for the electroanalytical sensing of capsaicin utilising screen printed carbon nanotube electrodes. Analyst, The, 2013, 138, 2970.	1.7	71
112	Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non-aqueous media. Journal of Materials Chemistry A, 2013, 1, 5962.	5.2	88
113	Electroanalytical sensing of selenium(iv) utilising screen printed graphite macro electrodes. Analytical Methods, 2013, 5, 851.	1.3	42
114	Fabrication of co-planar screen printed microband electrodes. Analyst, The, 2013, 138, 2516.	1.7	27
115	Electroanalytical applications of screen printed microelectrode arrays. Sensors and Actuators B: Chemical, 2013, 181, 454-462.	4.0	38
116	Analytical methods for quantifying creatinine within biological media. Sensors and Actuators B: Chemical, 2013, 183, 239-252.	4.0	64
117	Square-wave voltammetric determination of paraquat using a glassy carbon electrode modified with multiwalled carbon nanotubes within a dihexadecylhydrogenphosphate (DHP) film. Sensors and Actuators B: Chemical, 2013, 181, 306-311.	4.0	78
118	Exploring the origins of the apparent "electrocatalytic―oxidation of kojic acid at graphene modified electrodes. Analyst, The, 2013, 138, 4436-4442.	1.7	31
119	Ultra Flexible Paper Based Electrochemical Sensors: Effect of Mechanical Contortion upon Electrochemical Performance. Electroanalysis, 2013, 25, 2275-2282.	1.5	16
120	Prussian Blue Modified Solid Carbon Nanorod Whisker Paste Composite Electrodes: Evaluation towards the Electroanalytical Sensing ofH2O2. International Journal of Electrochemistry, 2012, 2012, 1-7.	2.4	1
121	The electrochemical performance of graphene modified electrodes: An analytical perspective. Analyst, The, 2012, 137, 1815.	1.7	82
122	Facile synthetic fabrication of iron oxide particles and novel hydrogen superoxide supercapacitors. RSC Advances, 2012, 2, 6672.	1.7	81
123	Exploring the electrochemical behavior of screen printed graphite electrodes in a room temperature ionic liquid. RSC Advances, 2012, 2, 7735.	1.7	15
124	Electroanalytical properties of screen printed shallow recessed electrodes. Analytical Methods, 2012, 4, 3140.	1.3	16
125	Graphene oxide gives rise to unique and intriguing voltammetry. RSC Advances, 2012, 2, 665-668.	1.7	44
126	Electroanalytical properties of screen printed graphite microband electrodes. Sensors and Actuators B: Chemical, 2012, 169, 136-143.	4.0	44

#	Article	IF	CITATIONS
127	Fabricating graphene supercapacitors: highlighting the impact of surfactants and moieties. Chemical Communications, 2012, 48, 1425-1427.	2.2	88
128	Electrochemistry of Q-Graphene. Nanoscale, 2012, 4, 6470.	2.8	40
129	Electrochemical measurement of the DNA bases adenine and guanine at surfactant-free graphene modified electrodes. RSC Advances, 2012, 2, 5800.	1.7	34
130	Graphene electroanalysis: Inhibitory effects in the stripping voltammetry of cadmium with surfactant free graphene. Analyst, The, 2012, 137, 420-423.	1.7	13
131	Platinum screen printed electrodes for the electroanalytical sensing of hydrazine and hydrogen peroxide. Analytical Methods, 2012, 4, 1272.	1.3	37
132	Printable thin film supercapacitors utilizing single crystal cobalt hydroxidenanosheets. RSC Advances, 2012, 2, 1508-1515.	1.7	48
133	Limitations of CVD graphene when utilised towards the sensing of heavy metals. RSC Advances, 2012, 2, 5385.	1.7	21
134	CVDgraphenevs. highly ordered pyrolytic graphite for use in electroanalytical sensing. Analyst, The, 2012, 137, 833-839.	1.7	33
135	Electroanalytical sensing of chromium(iii) and (vi) utilising gold screen printed macro electrodes. Analyst, The, 2012, 137, 896.	1.7	101
136	The electrochemistry of CVD graphene: progress and prospects. Physical Chemistry Chemical Physics, 2012, 14, 8264.	1.3	148
137	Graphene electrochemistry: fundamental concepts through to prominent applications. Chemical Society Reviews, 2012, 41, 6944.	18.7	540
138	Electrochemical utilisation of chemical vapour deposition grown carbon nanotubes as sensors. Vacuum, 2012, 86, 507-519.	1.6	20
139	Electrolytically fabricated nickel microrods on screen printed graphite electrodes: Electro-catalytic oxidation of alcohols. Analytical Methods, 2011, 3, 74-77.	1.3	9
140	Graphene electrochemistry: Fabricating amperometric biosensors. Analyst, The, 2011, 136, 2084.	1.7	57
141	Solid carbon nanorod whiskers: application to the electrochemical sensing of biologically relevant molecules. RSC Advances, 2011, 1, 93.	1.7	8
142	A facile approach for quantifying the density of defects (edge plane sites) of carbon nanomaterials and related structures. Physical Chemistry Chemical Physics, 2011, 13, 1210-1213.	1.3	30
143	CVD graphene electrochemistry: biologically relevant molecules. Physical Chemistry Chemical Physics, 2011, 13, 20284.	1.3	53
144	CVD graphene electrochemistry: the role of graphitic islands. Physical Chemistry Chemical Physics, 2011, 13, 15825.	1.3	53

#	Article	IF	CITATIONS
145	New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst, The, 2011, 136, 1067.	1.7	407
146	Electrochemistry of graphene: not such a beneficial electrode material?. RSC Advances, 2011, 1, 978.	1.7	217
147	Graphene Electrochemistry: Surfactants Inherent to Graphene Can Dramatically Effect Electrochemical Processes. Electroanalysis, 2011, 23, 894-899.	1.5	85
148	Quantifying the electron transfer sites of graphene. Electrochemistry Communications, 2011, 13, 8-11.	2.3	76
149	Graphene electrochemistry: Surfactants inherent to graphene inhibit metal analysis. Electrochemistry Communications, 2011, 13, 111-113.	2.3	73
150	An overview of graphene in energy production and storage applications. Journal of Power Sources, 2011, 196, 4873-4885.	4.0	819
151	Disposable highly ordered pyrolytic graphite-like electrodes: Tailoring the electrochemical reactivity of screen printed electrodes. Electrochemistry Communications, 2010, 12, 6-9.	2.3	50
152	Metallic impurity free carbon nanotube paste electrodes. Electrochemistry Communications, 2010, 12, 144-147.	2.3	27
153	Screen printed electrodes provide micro-domain sites for fabricating disposable electro-catalytic ensembles. Electrochemistry Communications, 2010, 12, 406-409.	2.3	16
154	In situ bismuth film modified screen printed electrodes for the bio-monitoring of cadmium in oral (saliva) fluid. Analytical Methods, 2010, 2, 645.	1.3	45
155	Graphene electrochemistry: an overview of potential applications. Analyst, The, 2010, 135, 2768.	1.7	481
156	Nickel oxide screen printed electrodes for the sensing of hydroxide ions in aqueous solutions. Analytical Methods, 2010, 2, 1152.	1.3	27
157	Exploring the physicoelectrochemical properties of graphene. Chemical Communications, 2010, 46, 8986.	2.2	127
158	High throughput screening of lead utilising disposable screen printed shallow recessed microelectrode arrays. Analyst, The, 2010, 135, 76-79.	1.7	9
159	Graphite screen printed electrodes for the electrochemical sensing of chromium(vi). Analyst, The, 2010, 135, 1947.	1.7	97
160	Electroanalytical sensing of nitrite at shallow recessed screen printed microelectrode arrays. Analytical Methods, 2010, 2, 851.	1.3	45
161	Characterization and fabrication of disposable screen printed microelectrodes. Electrochemistry Communications, 2009, 11, 1377-1380.	2.3	59
162	Characterisation of commercially available electrochemical sensing platforms. Sensors and Actuators B: Chemical, 2009, 138, 556-562.	4.0	177

#	Article	IF	CITATIONS
163	Screen printed recessed microelectrode arrays. Sensors and Actuators B: Chemical, 2009, 142, 342-346.	4.0	38
164	Next generation screen printed electrochemical platforms: Non-enzymatic sensing of carbohydrates using copper(ii) oxide screen printed electrodes. Analytical Methods, 2009, 1, 183.	1.3	57
165	A systematic study of the electrochemical determination of hydrogen peroxide at single-walled carbon nanotube ensemble networks. Electrochemistry Communications, 2008, 10, 1872-1875.	2.3	20
166	The underlying electrode causes the reported â€~electro-catalysis' observed at C60-modified glassy carbon electrodes in the case of N-(4-hydroxyphenyl)ethanamide and salbutamol. Electrochimica Acta, 2008, 53, 5885-5890.	2.6	16
167	Electroanalytical Determination of Cadmium(II) and Lead(II) Using an <i>in-situ</i> Bismuth Film Modified Edge Plane Pyrolytic Graphite Electrode. Analytical Sciences, 2007, 23, 283-289.	0.8	105
168	Super-washing does not leave single walled carbon nanotubes iron-free. Analyst, The, 2007, 132, 21-23.	1.7	79
169	Use of High-Purity Metal-Catalyst-Free Multiwalled Carbon Nanotubes To Avoid Potential Experimental Misinterpretations. Langmuir, 2007, 23, 9501-9504.	1.6	91
170	Single walled carbon nanotubes contain residual iron oxide impurities which can dominate their electrochemical activity. Electrochemistry Communications, 2007, 9, 2330-2333.	2.3	93
171	The electroanalytical detection of hydrazine: A comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array. Analyst, The, 2006, 131, 106-110.	1.7	236
172	Electrochemically polymerised composites of multi-walled carbon nanotubes and poly(vinylferrocene) and their use as modified electrodes: Application to glucose sensing. Analyst, The, 2006, 131, 670-677.	1.7	67
173	Edge Plane Sites on Highly Ordered Pyrolytic Graphite as Templates for Making Palladium Nanowires via Electrochemical Decoration. Journal of Physical Chemistry B, 2006, 110, 22306-22309.	1.2	56
174	New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. Analyst, The, 2006, 131, 15-21.	1.7	532
175	Iron Oxide Particles Are the Active Sites for Hydrogen Peroxide Sensing at Multiwalled Carbon Nanotube Modified Electrodes. Nano Letters, 2006, 6, 1556-1558.	4.5	373
176	Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications. Small, 2006, 2, 182-193.	5.2	972
177	Graphite impurities cause the observed â€~electrocatalysis' seen at C60 modified glassy carbon electrodes in respect of the oxidation of l-cysteine. Analytica Chimica Acta, 2006, 566, 1-4.	2.6	26
178	Chemically Modified Carbon Nanotubes for Use in Electroanalysis. Mikrochimica Acta, 2006, 152, 187-214.	2.5	336
179	Abrasively modified electrodes: mathematical modelling and numerical simulation of electrochemical dissolution/growth processes under cyclic voltammetric conditions. Journal of Solid State Electrochemistry, 2006, 10, 857-864.	1.2	11
180	Carbon Nanotubes Contain Metal Impurities Which Are Responsible for the "Electrocatalysis―Seen at Some Nanotube-Modified Electrodes. Angewandte Chemie - International Edition, 2006, 45, 2533-2537.	7.2	581

#	Article	IF	CITATIONS
181	Oxygenated Edge Plane Sites Slow the Electron Transfer of the Ferro-/Ferricyanide Redox Couple at Graphite Electrodes. ChemPhysChem, 2006, 7, 1337-1344.	1.0	214
182	Edge Plane Pyrolytic Graphite Electrodes in Electroanalysis: An Overview. Analytical Sciences, 2005, 21, 1263-1268.	0.8	140
183	Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chemical Communications, 2005, , 829.	2.2	922
184	Gas sensing using edge-plane pyrolytic-graphite electrodes: electrochemical reduction of chlorine. Analytical and Bioanalytical Chemistry, 2005, 382, 1169-1174.	1.9	33
185	Voltammetry at spatially heterogeneous electrodes. Journal of Solid State Electrochemistry, 2005, 9, 797-808.	1.2	203
186	Exploration of gas sensing possibilities with edge plane pyrolytic graphite electrodes: nitrogen dioxide detection. Analyst, The, 2005, 130, 280.	1.7	17
187	Hydrodynamic Electrochemistry:  Design for a High-Speed Rotating Disk Electrode. Analytical Chemistry, 2005, 77, 1928-1930.	3.2	22
188	Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Analyst, The, 2005, 130, 1232.	1.7	390
189	Sonoelectroanalysis: investigation of bismuth-film-modified glassy carbon electrodes. Analytical and Bioanalytical Chemistry, 2004, 379, 277-282.	1.9	54
190	Mercury-free sono-electroanalytical detection of lead in human blood by use of bismuth-film-modified boron-doped diamond electrodes. Analytical and Bioanalytical Chemistry, 2004, 379, 700-6.	1.9	73
191	The cyclic voltammetric response of electrochemically heterogeneous surfaces. Journal of Electroanalytical Chemistry, 2004, 574, 123-152.	1.9	178
192	Abrasive immobilization of carbon nanotubes on a basal plane pyrolytic graphite electrode: application to the detection of epinephrine. Analyst, The, 2004, 129, 225.	1.7	141
193	Ultrasound: promoting electroanalysis in difficult real world media. Analyst, The, 2004, 129, 678.	1.7	42
194	Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubesElectronic supplementary information (ESI) available: the use of CNT-modified electrodes in electrochemistry, and SEM images of MWNTs before immobilisation and after modification of a basal plane pyrolytic graphite electrode. See	2.2	396
195	http://www.rsc.org/suppdata/cc/b4/b406174h/. Chemical Communications, 2004, , 1804. Electrocatalytic detection of thiols using an edge plane pyrolytic graphite electrode. Analyst, The, 2004, 129, 755.	1.7	147
196	Basal Plane Pyrolytic Graphite Modified Electrodes:Â Comparison of Carbon Nanotubes and Graphite Powder as Electrocatalysts. Analytical Chemistry, 2004, 76, 2677-2682.	3.2	481
197	Voltammetric Exploration and Applications of Ultrasonic Cavitation. ChemPhysChem, 2003, 4, 169-178.	1.0	60