Kazuo Ishizuka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11116520/publications.pdf

Version: 2024-02-01

35	1,873	19	28
papers	citations	h-index	g-index
36	36	36	1825
all docs	does citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Extremely low count detection for EELS spectrum imaging by reducing CCD read-out noise. Ultramicroscopy, 2019, 207, 112827.	1.9	9
2	K-4 Current Status of Crystal Structure Analysis using Scanning Transmission Electron Microscopy. Microscopy (Oxford, England), 2019, 68, i22-i22.	1.5	0
3	Managing dose-, damage- and data-rates in multi-frame spectrum-imaging. Microscopy (Oxford,) Tj ETQq1 1 0.784	1314 rgBT	/Qverlock 1
4	Do We Need Three-Dimensional Fourier Transform Analysis to Evaluate High-Performance TEMs?. Microscopy Today, 2018, 26, 42-49.	0.3	0
5	Rapid measurement of low-order aberrations using Fourier transforms of crystalline Ronchigrams. Ultramicroscopy, 2017, 180, 59-65.	1.9	5
6	Why We Need to Use 3D Fourier Transform Analysis to Evaluate a High-performance TEM. Microscopy and Microanalysis, 2016, 22, 24-25.	0.4	0
7	Quantitative Annular Dark-Field Imaging at Atomic Resolution. Microscopy and Microanalysis, 2016, 22, 304-305.	0.4	0
8	Why Do We Need to Use Three-Dimensional (3D) Fourier Transform (FT) Analysis to Evaluate a High-Performance Transmission Electron Microscope (TEM)?. Microscopy and Microanalysis, 2016, 22, 971-980.	0.4	3
9	Quantitative Annular Dark-Field Imaging of Single-Layer Graphene. Microscopy and Microanalysis, 2015, 21, 1213-1214.	0.4	O
10	Quantitative annular dark-field imaging of single-layer graphene—II: atomic-resolution image contrast. Microscopy (Oxford, England), 2015, 64, 409-418.	1.5	23
11	Quantitative annular dark-field imaging of single-layer graphene. Microscopy (Oxford, England), 2015, 64, 143-150.	1.5	20
12	Quantitative evaluation of temporal partial coherence using 3D Fourier transforms of through-focus TEM images. Ultramicroscopy, 2013, 134, 86-93.	1.9	15
13	Direct observation and dynamics of spontaneous skyrmion-like magnetic domains in a ferromagnet. Nature Nanotechnology, 2013, 8, 325-328.	31.5	64
14	Image simulation in high-resolution electron microscopy. Keikinzoku/Journal of Japan Institute of Light Metals, 2013, 63, 415-424.	0.4	0
15	Spatially resolved diffractometry with atomic-column resolution. Ultramicroscopy, 2011, 111, 1111-1116.	1.9	32
16	Local crystal structure analysis with several picometer precision using scanning transmission electron microscopy. Ultramicroscopy, 2010, 110, 778-782.	1.9	105
17	Direct observation of single dopant atom in light-emitting phosphor of \hat{l}^2 -SiAlON:Eu2+. Applied Physics Letters, 2009, 94, .	3.3	147
18	Local crystal structure analysis with 10-pm accuracy using scanning transmission electron microscopy. Journal of Electron Microscopy, 2009, 58, 131-136.	0.9	49

#	Article	lF	CITATIONS
19	Decisive factors for realizing atomic-column resolution using STEM and EELS. Micron, 2008, 39, 257-262.	2.2	26
20	Decisive factors for realizing atomic-column resolution using STEM and EELS. Micron, 2008, 39, 653-657.	2.2	10
21	Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature, 2007, 450, 702-704.	27.8	359
22	0.23eV energy resolution obtained using a cold field-emission gun and a streak imaging technique. Micron, 2005, 36, 465-469.	2.2	24
23	Phase measurement of atomic resolution image using transport of intensity equation. Microscopy (Oxford, England), 2005, 54, 191-197.	1.5	152
24	The study of Al-L23 ELNES with resolution-enhancement software and first-principles calculation. Journal of Electron Microscopy, 2003, 52, 299-303.	0.9	35
25	A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy, 2002, 90, 71-83.	1.9	264
26	Prospects of atomic resolution imaging with an aberration-corrected STEM. Journal of Electron Microscopy, 2001, 50, 291-305.	0.9	51
27	High-resolution tilted single-sideband holography. , 1995, , 317-327.		0
28	Resolution improvement by titled single-sideband holography: preliminary experiments. Ultramicroscopy, 1994, 53, 9-14.	1.9	4
29	Threeâ€dimensional reconstruction of magnetic vector fields using electronâ€holographic interferometry. Journal of Applied Physics, 1994, 75, 4593-4598.	2.5	63
30	Three-dimensional reconstruction of electric-potential distribution in electron-holographic interferometry. Applied Optics, 1994, 33, 829.	2.1	47
31	Video-rate electron-holographic interference microscopy using a liquid-crystal panel. Optical Review, 1994, 1, 304-307.	2.0	2
32	Analysis of electron image detection efficiency of slow-scan CCD cameras. Ultramicroscopy, 1993, 52, 7-20.	1.9	46
33	Phase-extraction technique for electron holography using a grating optical system. Applied Optics, 1992, 31, 5940.	2.1	4
34	New form of Transmission Cross Coefficient for High-Resolution Imaging. Proceedings Annual Meeting Electron Microscopy Society of America, 1990, 48, 60-61.	0.0	2
35	Contrast transfer of crystal images in TEM. Ultramicroscopy, 1980, 5, 55-65.	1.9	269

3